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ABSTRACT 

A dual potential decomposition of the velocity field into a scalar and a vector 

potential function is extended to three dimensions and used in the finite-difference 

simulation of steady three-dimensional inviscid rotational flow and viscous flow. 

The  finite-difference procedure has been used to  simulate the flow through the 

80- by 120-Foot Wind Tunnel a t  NASA Ames Research Center. Rotational flow 

produced by the stagnation pressure drop across vanes and screens which are located 

a t  the entrance of the inlet is modeled using actuator disk theory. Results are 

presented for two different inlet vane and screen configurations. The  numerical 

predictions are  in good agreement with experimental data.  

The  dual potential procedure has also been applied to calculate the viscous flow 

along two and three-dimensional troughs. Viscous effects are simulated by injecting 

vorticity which is computed from a boundary-layer algorithm. For attached flow 

over a three-dimensional trough, the present calculations are in good agreement with 

other numerical predictions. For separated flow, it is shown from a two-dimensional 

anal) sis that  the boundary-layer approximation provides an accurate measure of the 

vorticity in regions close to  the wall; whereas further away from the wall, caution 

has to be exercised in using the boundary-layer equations to  supply vorticity to the 

dual potential formulation. 
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1. IN TRODU (:TION 

A. Overview of the Problem 

The numerical solution of the partial differential equation5 gokerning the conser- 

vation of mass, ~nomentum. and energ) is a n  iinportant tool v i th  Mhich to analyze 

and stud) fluid motion. Recent adbances in computer qpeed and memory together 

wi th  improved methodolog! have resulted in ( omput ational fluid dynamics (CFD) 

pia! ing an increasingly important role in aerodj namic research and development. 

The governing equations of fluid dynamics are the Navier-Stokes equations and sev- 

eral algorithms have been developed to  solve these equations for simple two and 

three-dimensional configurations. However, even with recent developments in com- 

puter speed and memor?. one of the pacing problems of today is the efficient and 

accurate prediction of flow around complex three-dimensional geometries. 

Several approaches are commonly employed in order to reduce the overall com- 

putational time and cost of obtaining numerical solutions of steady-state flow prob- 

lems. One strat,egy is to  solve a single set of simplified equations to approximate the 

entire flowfield. The most commonly used simplification for high Reynolds number 

flows is to solve the full potential equation, thereby assuming the flow to  be inviscid 

and irrotational. However. even a t  high Reynolds number, many of the flows in 

nature possess substantial regions with rotation or vorticity. If one were to solve 

these problems with the potential equation, then the tedious task of setting up 

vortex-sheet discontinuities in the field and adjusting them to the surrounding flow 

has to be encountered. The  alternative, which is the next step in the refinement of 

the approximation, is to solve the Euler equations which permit rotational flow ev- 

erywhere. Finally, if one is interested in the viscous effects a t  solid boundaries, then 



it is necessary to solve the complete Yavier-Stokes equations or an appropriately 

reduced form of t,hese equations which contains viscous t.erms. 

Another strategy which is often employed is to divide the flow-field into separate 

zone< and treat each zone u ith a simplified set of eqiiat ions u it  h matching performed 

in order to couple the separate solutions. The equation sets, and hence the solution 

algorithms. used in the different regions may be drastically different as. for example. 

in the commonly used viscous-inviscid interaction methods in which  a boundary- 

IaJer algorithm is coupled with an inviscid flow solver. 

After having selected a simplified or complete equation set, one is faced with sev- 

eral alternative procedures for solving them. For two-dimensional flows, it is as com- 

mon to find solution algorithms written to solve for the primitive variables: velocity 

and pressure. as it is easy to  find algorithms to  solve for the  derived variables: stream 

function and vorticity. In two dimensions, the advantage of the vorticity/stream- 

function approach is that  continuity is automatically satisfied at the expense of solv- 

ing a higher-order differential equation. Also, the same vorticitylstream-function 

approach results in fewer variables due to  the elimination of the pressure from the 

governing equations. For the more general three-dimensional case, this approach in 

fact leads to more variables than the primitive variable case. However, the method 

may have advantages in certain applications. 

The focus of this study is t80 develop a procedure for solving the equations of 

motion with a vorticity/stream-function type of method, and a review of previous 

work done in this area is given in the next section. 
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B. Li te ra tu re  Rev iew 

- 1 .  Vector potential methods 

a. Incompressible flow Several efforts have been made to  extend the ad- 

vantages offered b> t he vorticity,’stream-function approach in two dimensions to 

three-dimensional flow problems by expressing the velocity as the curl of a vec- 

tor potential so that continuitj is automatically satisfied (for incompressible flow) 

since the divergence of the curl of a vector is identically zero. A review of these 

efforts is provided by Richardson and Cornish (1977) and by Ylorino (1985). Be- 

cause early efforts were. in part ,  hampered by lack of computational resources, not 

much work was reported for three-dimensional problems until Hirasaki and Hel- 

lums (1967) formulated the equatims a n d  the boundary conditions by expressing 

the velocity as the curl of a vectc.7 potential. . 4 Z i Z  and Hellums (1967) applied 

this formulation to study three-dimensional rial ural conLect ion in enclosures. The 

formulation of Hirasaki and Hellums required 1 he solution of a second-order partial 

differential equation in order to obtain the  boundary conditions on the vector po- 

tential. Subsequently, they realized (Ilirasaki a n d  Hellums. 1970) t ha t  the addition 

of a scalar potential function to  the velocity decomposition simplified the bound- 

ary conditions on the vector potential at  the expense of introducing an additional 

variable and its corresponding equation. This velocity decomposition, in a slightly 

different form, has been termed the “dual potential” decomposition by Chaderjian 

and Steger (1983) and is used in this study to refer to the decomposition of the 

velocity into a scalar and a vector potential. The vector potential has been found 

to be particularly useful in the solution of three-dimensional natural convection in 

enclosures and several results have been reported ( c f .  Mallinson and de Vahl Davis, 

1973; Ozoe et  al., 1976; 1977; 1982). For these problems, it is not necessary to 



include the scalar potential and hence computation time and storage requirements 

are reduced. Aziz and Hellums (1967) also showed that  the vector potential for- 

mulation is computationally less expensive than a comparable primitive variable 

formulation for the problems they considered. 

Aregbesola and Burley (1577) applied the dual potential formulation of Hi- 

rasaki and Hellums (1970) to  study incompressible flow through ducts with inter- 

nal recesses. Richardson and Cornish ( ~ 7 7 )  presented a rigorous analysis for the 

existence and uniqueness of the vector potential for general three-dimensional in- 

compressible flow problems. In order to  solve the full Navier-Stokes equations, the 

dual potential formulabion requires the solution and storage of seven variables (four 

potential functions and three vorticity components) as opposed to  four (three ve- 

locity components and pressure) in the primitive variable formulation. Hence. there 

have been several attempts to reduce the number of variables. Wong and Reizes 

(1984) replaced the scalar potential function with a specified inlet velocity vector, 

therebj reducing storage and computation time. However, their technique was re- 

stricted to flow through constant area ducts with incoming irrotational flow. More 

recently, Yang and Camarero (1986) reported solutions for three-dimensional duct 

flow problems using a dual potential type formulation. They used the Hirasaki and 

Hellums (1970) formulation for the boundary conditions on the vector potential. In 

particular, their formulation allowed for incoming rotational flow. 

In recent years, with the availability of greater computer resources, some of the 

advantages of using the vector potential formulation has revived interest in this ap- 

proach. One area of ambiguity in the boundary conditions for the vector potential 

has been the case of multiply connected regions such as annular passages. Richard- 

son and Cornish (1977) derived the boundary conditions on the vector potential for 
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general three-dimensional geometries including multiply connected regions. Vt’ong 

and Reizes (1986) derived slightly different boundary conditions for such regions 

and presented solutions for flow through cylindrical annular passages. 

Related methods have been presented by Davis et al. (1986) who used the 

decomposition of the velocity field into t w o  stream functions and applied it  to 

compute the incompressible viscous flow over three-dimensional troughs and bumps. 

.4n excellent review of the techniques used for solving the Navier-Stokes equations 

in two dimensions wi th  the vorticity/stream-function met hod is given by Roache 

(1972). 

b Compressible flow ,411 of the studies mentioned up to  now have dealt with 

incompressible steady flow problems. In inviscid compressible flow. the potential 

equation has been the workhorse of the aerospacc. induTtr!. being widely used to 

compute the flow around complex configurations for 2 uidci range of flow conditions. 

In the presence of shock waves, the flow is no longer irrotational, and entropy a n d  

vorticity corrections are needed to give better estimates of flow parameters. Em- 

mons (1948) was the first to  use the stream function to account for rotrational effects 

and entropy changes following shocks in two-dimensional transonic flow. Hafez and 

Lovell (1981, 1983) also used the stream function to develop procedures to  correct 

the potential solution. They studied a variety of methods to include rotational ef- 

fects in the potential solution. Chaderjian and Steger (1983, 1985), working along 

similar lines, developed the  dual potential formulation to simulate the steady tran- 

sonic inviscid rotational flow around airfoils. Atkins and Hassan (1983) presented a 

different stream function formulation in which density and stream function were the 

dependent variables and the governing equations were solved in strong conservative 

law form. Recently, Hafez et al. (1987) developed a finhe-element formulation in 
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which they used a dual potential type velocity decomposition scheme and applied 

it t o  calculate the transonic viscous flow through symmetric nozzles. 

In three dimensions, Chaviaropoulos et al. (1986) developed a method for 

solling compressible inviscid rotational flow in the subsonic regime and used it 

to sirnulate flow through a rectangular elbow. Their formulation is similar to  the 

one presented i n  this work for inviscid flow. Other alternate formulations using 

the Clebsch velocity decomposition ha\-e been presented by Grossman (1983) to 

compute inviscid supersonic conical flows, and by Chang and Adamczyk (1983) to 

compute inviscid subsonic rotational flow in turning channels. Sherif and Hafez 

(1983) presented a scheme for solving irrotational transonic flow using two stream 

functions and discussed possible extensions to rotational flow. Morino (1985) de- 

rived a set of equations for unsteady, compressible viscous flow. No implerrientat ion 

of the formulation has yet been reported. 

2 Viscous flow 

A number of methods have been used to  simulate three-dimensional viscous 

flows. Some of the recent developments and trends in viscous flow simulation have I 
I 

been reviewed by Steger and Van Dalsem (1985) and by Shang (1985). Viscous 

flow can be simulated either by solving the complete Navier-Stokes equations (or a 

reduced form of these equations) or, alternatively, by coupling the boundary-layer 

I 
, 

equations to a n  efficient inviscid flow model (e.g., Lock, 1981; Melnik, 1981; Mc- 

Donald and Briley, 1983). Various approximations to the Navier-Stokes equations 

such as the “parabolized” Navier-Stokes equations (PNS), the “partially parabo- 

lized” Navier-Stokes equations (PPNS), and the “thin-layer” Navier-Stokes equa- 

tions (TLNS), are discussed by Anderson et  a]. (1984). 
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Efforts a t  solving the Navier-Stokes equations have been aimed a t  improving the 

robustness and speed of the various algorithms that  are currently popular (Beam 

and "arming, 1976; Briley and hlcDonald. 1977; XlacCormack, 1982). 11\11 of these 

algorithms solve the governing equations in primitive variables. Other algorithms 

have been developed for wlving the incompressible NaL ier-Stokes equations ( c f .  

Orszag and Israeli, 1974) .  A survey of the present state of the art in the numerical 

solution of the Nabier-Stokes equations is given by Holst (198'7), while details of 

the various methods arc  given by Anderson et al. (1984). I t  is sufficient t o  mention 

here tha t  the increased availability of supercomputers has made it possible to per- 

form three-dimensional calculations of complete aircraft configurations (Shang and 

Scherr, 1986; Flores et a]., 1987). However, due to time and storage limitations, it is 

still necessary to find ways to  improve the con\-ergence rate of the Navier-Stokes al- 

gorit h r r l s .  One approach has been the "fortified" Navier-Stokes concept introduced 

by \'an Ilalsem and Steger (1985). In this approach, the Navier-Stokes equations 

are solved in the entire flow field. In addition, the boundary-layer equations are 

solved near the wall on a fine grid to resolve the viscous gradients near the wall. 

This boundary-layer solution is then superimposed as a source function by inter- 

polation to the main grid. This approach was found to  improve the convergence 

rate of the Navier-Stokes algorithm by a factor of 20 for the cases considered (Van 

Dalsem and Steger, 1986b). Along similar lines, Goble and Fung (1987) developed 

a truncation error scheme in which a local solution was obtained on a fine grid and 

used to form an approximation to the truncation error. This approximation was 

then used as a forcing function in the global solver. 

On the other hand, the search for alternative faster, but  possibly not as general, 

methods has resulted in various zonal schemes. Here, efforts have been concentrated 
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on making the schemes more general by improving the approximations made in the 

various zones. One such approach to  improve the accuracy of the inviscid flow 

approximat.ion was proposed by St.eger and Van Dalsem (1985) wherein viscous 

effects were accounted for by the injection of vorticity into an inviscid rotational 

solution. The  vorticity mas obtained from a suitable boundary-layer solution which 

interacted with the inviscid rotational flow through the pressure field. This ap- 

proach was implemented in two  dimensions to  calculate the separated flow through 

a diffuser. A similar idea. referred to as the "pseudo Navier-Stokes approach", was 

proposed at, about the same time by Whitfield (1985) with the difference tha t  Steger 

and \'an Dalsem used the vorticity/stream-function method to  calculate the invis- 

cid flow while Whitfield maintained the primitive variable formulation for both the 

boundary-layer and the outer flow equations. Halim and Hafez (1984) developed 

a slightly different scheme in which they used the stream function to  calculate the 

inviscid flow and the "partially parabolized" Navier-Stokes equations to  supply the 

vorticity instead of the boundary-layer equations. 

One very useful approach for resolving viscous effects adjacent to solid surfaces 

and wakes is the viscous-inviscid interact,ion method. In this method, the viscous 

shear layer over the wall or the wake, and the inviscid flow external to the shear layer 

are solved separately, together with a matching process which allows for the interac- 

tion of the two flows. In the most common viscous-inviscid interaction schemes, the 

viscous layer is resolved by solving the boundary-layer equations, and the inviscid 
; 

flow by solving the full-potential equation. The  two solutions are matched by iter- 

ating for the displacement thickness. Some like Whitfield et al. (1981) have used 

the Euler equations t.o obtain the inviscid flow solution. In two dimensions, vari- 

ous methods have been proposed to  improve the speed and accuracy of the viscous 
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and the inviscid sets of equations ( c f .  Lock, 1981; Melnik, 1081; McDonald and 

Briley, 1983). hdost of these have concentrated on obtaining the quasi-simultaneous 

or simultaneous solution of the two sets of equations (Lee and Pletcher, 1986), 

to improve the con1 ergence rate. Initially. viscous-inviscid interaction procedures 

used the direct method in mhich the pressure was calculated from the inviscid solu- 

tion and specified as a forcing function for the boundary-layer equations. However, 

with the pressure specified, the boundary-lager equations become singular at sep- 

aration (Goldstein, 1938; Brown and Stewartson, 1969) and the equations must 

be solved in the inverse mode (Catherall and Mangler, 1966; Klineberg and Steger 

1974; Williams, 1975; Carter and Wornum, 1975; Kwon and Pletcher, 1979). In 

the inverse mode, the direct forcing function (pressure) is replaced by specifying 

an inverse forcing function such as displacement thickness or sk in  friction. In three 

dimensions. it is sufficient to only solve the streamwise momentum equation in the 

inverse mode to  avoid the separation-point singularity, while the cross-flow momen- 

t u m  equation can be solved in the direct mode (Edwards and Carter, 1985; Van 

Dalsem and Steger, 1986a), though results have been obtained with both momen- 

t u m  equations solved in the inverse mode, tha t  is, both components of skin friction 

or displacement thickness specified (Cousteix and Houdeville, 1981 ; Wigton and 

Yoshihara, 1983; Delery and Formery, 1983; Radwan and Lekoudis, 1984; Edwards 

and  Carter, 1985). 

There have been a number of schemes proposed for discretizing the steady three- 

dimensional boundary-layer equations (Der and Raetz, 1962; Dwyer, 1968; Krause 

et  al., 1976; Kitchens et al., 1975). Most of these studies address the problems asso- 

ciated with the hyperbolic character of the equations in the 5-2 plane. In addition, 

for steady flows, another problem is the requirement of initial da ta  along a y-z plane. 
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An excellent review of the contributions in this area can be found in the book by 

Anderson et a]. (1984). 14ost of these problems are circumvented by \‘an Dalsem 

and Steger (1985) by using a time-dependent approach for obtaining solutions for 

steady flows. Even though only steady-state solutions are computed, with the use 

of the unstead3 equations. relaxation algorithms can be devised which avoid some 

of the limitations of standard space-marching schemes. In addition to  being able 

to compute unsteady flows. solving the unsteadl equations may provide a simpler 

and alternative method for computing stead], separating and reattaching flows by 

enabling the use of flow-dependent difference operators. Additionally, with the use 

of a relaxation approach, simpler boundary conditions can be specified. This is 

especially true for boundary-layers in three dimensions, where, in a space marching 

scheme, all variables must be specified a t  inflow and at least. one side boundary; 

whereas in a relaxation scheme. simpler zero-gradient boundary conditions can be 

used at the side boundary and a n  additional set of reduced equations for a plane of 

symmetry need not be solved. 

C. Scope of the Present Study 

This study is a combination of several of the solution strategies outlined above. 

The  goal of providing a more complete solution to the flow-field is achieved by using 

a zonal method wherein a simplified equation set - namely the potential equation - 

is employed in regions of irrotational flow which is coupled with the Euler equations 

in regions of rotational flow. In the present method, a simplified set of equations is 

derived which have several useful features: 

1) For the simplest kind of flow, without any modifications to  the numerical 

algorithm, the method reduces to solving the full-potential equation. Hence, it is 
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possible to take advantage of the many fast algorithms that have been developed 

for this widely used equation. 

2) For inviscid rotational flow. it is necessary to solve additional linear Poisson 

equations to  account for rotational effects. ilgain. fast, solution schemes can be 

used. 

3) Finally, with the present approach, it is easy to  extend the method to more 

general flow problems by solving additional equations for transport of vorticity or 

alternatively couple the in \  iscid set in a novel manner with a suitable boundary-layer 

algorithm, thereby ret airiing the advantages of the individual solution algorithms 

for the simplified sets of equations. 

In this study. the dual potential formulation of Chaderjian and Steger (1985) is 

extended to  three dimensions and used to simulate the steady. inviscid rotational 

flow through indraft wind tunnels. Screens and vanes which are located at the 

inlet entrance are modeled using actuator disk theory. The  numerical results are 

compared with experimental data.  A new interaction scheme is developed for cou- 

pling the  inviscid dual potential formulation with the three-dimensional boundary 

layer procedure developed by Van Dalsem and Steger (1985). This interaction pro- 

cedure is applied to  compute the steady, attached flow over a three-dimensional 

trough. The  procedure is also used t o  compute the steady, separated flow over a 

two-dimensional trough using a prescribed vorticity boundary condition. 

The  conservation laws for steady, three-dimensional flow are presented in Chap- 

ter 11. Also in Chapter 11, the dual potential velocity decomposition scheme is pre- 

sented together with the numerical algorithms for solving the various equations. In 

Chapter 111, the solution procedure for inviscid rotational flows is presented, along 

with results for flow through an indraft wind tunnel. This chapter also includes a 
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description of the actuator disk theory used to model the screens and vanes which 

are located a t  the entrance of the wind tunnel. Chapter IV presents the solution 

method for viscous flows along with results for flow over various trough configura- 

tions. This is followed by the conclusions in Chapter V. Appendix '4 includes an 

analysis of the geometric error5 created b, using nonuniform grids in transformed 

coordinates, while ,4ppendix B gives the numerical algorithms for solving the in- 

compressible two-dimensional dual potential and boundary-layer equations. 
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11. DUAL POTENTIAL FORMULATION 

The objective of the portion of the study described in this chapter is to de- 

velop a formulation for simulating steady. three-dimensional rotational flow using 

the dual potential velocity decornposit ion. With the dual potential decomposition, 

the dependent variables are derived variables. vorticity and entropy. In order to 

derive the necessary equations for both inviscid and viscous rotational flow, the 

governing equations of mass. momentum and energy will first be presented in the 

more conventional primitive variables where velocity components and pressure are 

the dependent variables. Then the dual potential form of the equations will be 

derived. Finally, the numerical algorithms for the various equations will be given. 

A. Conservation Laws 

1 .  Governing equations in primitive variables 

The  governing conservation equations of mass, momentum and energy for the 

steady, three-dimensional flow of a perfect gas are derived in many textbooks in 

fluid mechanics. Using the  form given b y  Anderson et  al. (1984), the equations are 

presented below in Cartesian coordinates. 

Continuity : 

v . p +  0 

Moment urn: 

p(+ V)$= - 0 p  + v - 7' 

Energy: 



Equation of State: 

p = pRT 

In  these equations, p is the fluid density, $= (u, v, is the velocity vector, p is the 

pressure, T is temperature, H is the total enthalpy, R is the perfect gas constant,, 

G is the gradient operator, and 7' is the viscous stress t,ensor given by 

where btJ is the Kronecker delta (btJ = 1 if i = j and bZJ = 0 if i # j), and p is t h c  

viscosity. Using Fourier's law for heat transfer by conduction, the heat flux vector, 

f c a n  be expressed as 

f= -kTT (2.6) 

where k is thermal conductivity. The total cnthalp) H is defined in terms of the 

enthalpy h as 
. 

1 
2 

H = h +  <.i  (2.7) 

Also, for a perfect gas, the following relationships hold: 

where c p  is the specific heat a t  constant pressure, cu is the specific heat at  constant 

volume and y is the ratio of specific heats. 

2. Nondimensionalization 

Variables in the governing equations are first nondimensionalized by their free 

stream values. The nondimensionalization is shown below with the nondimension- 
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alized variables indicated by the carets (*) . 

In these equations. L is a reference length. In all siibseyuent material, unless other- 

wise noted, variables will be assumed to be nondimensionalized ah  hough the carets 

will be omitted for ease of reading. 

B. Velocity Decomposit~ioii Scheme 

I t  is well known that any velocity field can be expressed as the gradient of a 

scalar poten?ial and the curl of a vector potential (c f .  Aris, 1962; Panton, 1984): 

(2.10) 

(2.11) 

With this decomposit,ion. the divergence of cis given by 

where V2 is the Laplacian operator V - V,  and the curl of the velocity (or vorticity) 

is given by 

(2.13) 
- ( f ly ,  + 8 2 2 )  + ( x z y  + d % z )  

- ( x z z  + X z z )  + (dyx + $yz) 

- (dhz + @yy ) + (&z + x z y )  

A rigorous mathematical analysis for the existence and uniqueness of the vector 

potential functions was presented by Hirasaki and Hellums (1967), and by Richard- 

son and Cornish (1977), and proofs will not be  given here. The  three-dimensional 
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velocity field is represented by four potential functions, so there is one degree of 

redundancy in this decomposition. Hence, a constraint needs to  be imposed on 

these functions in order to  uniquely specify the velocity field. Following Chaderjian 

(1981), and Chaderjian and Steger (1985), the scalar potential is retained in order 

to  obtain an  equation for 4 that is similar to  the transonic full potential equation 

and a constraint is therefore imposed on the vector potential functions. A standard 

\ector potential constraint that  has often been employed ( c j .  Panton, 1984) is the 

condition tha t  the vector potential be divergence free. that  is, 

v . = 292 + x y  + +z = 0 (2.14) 

This consistency expression relates the vector potential functions to one another 

and removes the redundancy. It is used both to simplify the vorticity relations and 

to ohlain an estra boundary condition (see also Hirasaki and Hellums, 1970; Wong 

and Reizes, 1984: Chaviaropoulos et al., 1986). 

Subject to  the consistency condition of equation (2.14), the  vorticity assumes 

the compact symmetric form: 
v219 = - d] 

(2.15) 

or simply 

V 2 '  B = - G  (2.16) 

An additional consistency equation relating the vorticities is obtained from the 

vector identity 

(2.17) 



or 

( w l ) Z  + (Ls2)2/ t (w3)Z = 0 

wrhich is also the Laplacian operatring on equation (2 .14) .  

(2.18) 

~ 1 .  -. Boundary ~ conditions 

On any boundary surface two linear combinations of the vector potrent ial func- 

tions can be kept constant, and the vector potential consistency relation. equation 

(2.14), can be used to solve for a third linear combination. Tangency is then imposed 

on a body boundary surface from 

i i . C + - i i . V x B  (2.19) 

- 
In Cartesian coordinates, two components of B can be chosen to be constant on an 

J ,  y. or z boundary plane so tha t  ii - V x B = 0 and V . B = 0 supplies a Neumann 

boundary condition for the third component. For example, on a z = constant plane, 

29 and x are taken as constants. Then 1 9 ~  and xlr 1 0 and consistency gives $, = 0, 

from which II, can be determined on the z = constant surface. Likewise, xz and 

29, : 0 and t,angency, w = 0, is satisfied by setting g5z = 0. 

+ 4 

- 2 .  _____~ The  continuity equation 

For the velocity decomposition given by equation (2.10), the  continuity equation 

(2.1) takes the form 

(Pg55)z + (P4y)y  + ( P 4 z ) z  = 

- [ W ' y  - XZ)PZ + (292 - &)Py + ( x s  - 29y)PzI 

(2.20) 

It may be noted tha t  this differs from the usual form of the transonic full-potential 

equation by the presence of the nonzero right-hand-side terms describing the ro- 

tational component of the velocity. For constant density, equation (2.20) reduces 
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simply to 

(2.21) 

It is useful t o  note that  for a given vorticity distribution, the dual potential set of 

equations given by equations (2.16) and (2.20),  subject to the appropriate boundary 

conditions, can be solved to obtain the complete velocitj field. In particular, for 

the vector potential functions, these equations are simple linear Poisson equations, 

which are weakly coupled and hence can be individually solved efficiently using 

existing well developed methods. The  dual potential set of equations outlined above 

are  obtained from the continuity equation and from mathematical simplifications 

developed from the velocity decomposition. For irrotational inviscid flow, vorticity 

is zero and only the full potential equation needs to be solved, as the momentum 

equations are, in effect, satisfied. For rotational flow, however, the momentum 

equations which prescribe the vorticity need to be considered in order to obtain a 

complete description of the flowfield. These equations are developed in the next 

section for both inviscid and viscous flow. 

C. The Moment~um Equations 

1 .  - {omentum equations for inviscid flow 

Inviscid flow is governed by the Euler equations which are obtained from the 

governing equations (2.1) - (2.8) by neglecting viscous and heat conduction terms. 

After omitting the viscous terms, the momentum equation (2.2) can be rewritten 

as 

p ( + O ) @ =  -vp (2.22) 
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Making use of the identity 

equation (2.22) can be rewritten as 

(2.23) 

(2.24) 

Crocco’s equation is obtained from the momentum equation by replacing the 

pressure gradient with an entropy gradient by using Gibb’s equation which is ob- 

tained from the First and Second Laws of Thermodynamics and can be written 

as 

VP T V S  = V h  - ~ 

P 
(2.25) 

Crocco‘s equation for a steady, adiabatic flow ( h  t i q 2  = constant ) can then be 

written as 

(2.26) d 

q A G - T V S  

An equation for the  convection of entropy is formed by taking the dot product 

of the velocity vector wi th  Crocco’ equation: 

cl‘- vs = 0 (2.27) 

Note t,hat equation (2.27) is formed from a linear combination of the Crocco equa- 

tions, and thus replaces one of the three equations given by equation (2.26). 

Also for a steady inviscid adiabatic flow of a perfect gas, Crocco’s relations, to- 

gether with the perfect gas relation, can be used to derive the  compressible Bernoulli 

equation (cf. Anderson et  a]., 1984): 

I 
7-1 

- ( S- sr ) /  R 
Pr 

(2.28) 
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where the subscript r refers to a reference state. 

These equations are modified for incompressible flow. For incompressible flow, 

density is taken to be constant and Bernoulli’s equation is no longer used. In 

addition, the total pressure, po = p + tpq ’ ,  is used in place of entropy, and Lamb’s 

equation replaces Crocco’s equation. l laking use of equations (2.24) - (2.26), the  

momentum equation for inviscid incompressible flow is writ ten as Lamb’s equation: 

1 

(2.29) 

and the entropy convection equation is replaced with a total pressure convection 

equation : 

9’. o p o  = 0 (2.30) 

Note again that  the total pressure convection equation was formed by taking the 

dot product of the \elocity vector with Lamb’s equation and therefore replaces one 

of the three equations given by Lamb’s equation. 

Boundary conditions for t,he vorticity and entropy/total pressure are dependent 

on the geometry and flow conditions and will be given in the Chapter 111, where 

results will be presented for a particular application of the procedure developed 

here. 

2. Momentum equations for viscous flow 

For viscous flow, the more complete momentum equations need to be solved. 

Assuming constant viscosity and density, equation (2.2) can be rewritten as 

1 
p ( + V ) ( i =  -vp+ -v2q, Re (2.31) 
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where Re is the reference Reynolds number defined as Re = poouxL/pLoo. Taking 

the curl of equation (2.31) and simplifying gives 

(2.32) 

The momentum equation in this form, together with the dual potential equa- 

tions can be solved to obtain the complete flowfield. However, in most cases, it is 

known tha t  viscous effects are confined to a tjhin layer adjacent to the wall and most 

of the outer flow is inviscid. This is the basis for boundary-layer theory. The effect 

of the boundary-layer on the outer inviscid flow is usually accounted for through the 

use of a displacement effect (Lighthill, 1958). With the present formulation, it is 

possible to develop an alternate representation for the influence of viscous effects on 

the inviscid flow - that  is, by obtaining the vorticity in the viscous region from the 

boundary-layer equations instead of solving the vorticity transport equations given 

by equation (2.32). That is, it may be possible to take advantage of the speed and 

efficiency of boundary-layer algorithms to calculate vorticity. With the vorticity 

specified, the dual potential set of equations could be solved to obtain the complete 

flow field. This concept is not new and has been proposed and implemented in 

two dimensions by Steger and Van Dalsem (1985). Various schemes for using the 

boundary-layer equations to supply the vorticity to the dual potential equations 

will be described in Chapter IV. 

D. Generalized Curvilinear Coordinates 

In order to simplify the treatment of arbitrary body boundaries in the  numerical 

simulation, body-fitted curvilinear coordinates are employed, and the flow domain 
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is mapped to a uniformly spaced rectangular coordinate region. The  general coor- 

dinate transformation is defined by 

In terms of the independent variables E ,  q .  <, the Cartesian velocity components can 

be evaluated from the potential functions using the chain rule of partial differenti- 

ation on equation (2 .11)  as 

= (Ea@: + 77247/ + < x 4 d  + (Et&,. + rly& + <y?J<) 

52 = J(S:CYr/ - 5 q Y : C )  

where J is the Jacobian of the transformation given by 

Unscaled contravariant velocity components of the velocity vector < can be 

defined as 
I/' = f x u  t &Jv + & W  
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The contravariant velocity components are conveniently split between the scalar 

potential contribution and the vector potential contribution as 

U = U 4 + U B  

V = V " V B  (2.38) 

(2.39) 

(2.40) 

A" = V t  - 
A*]( = 

= &z + C y ~ y  + t z ~ z  

vs = flzsx + vysy  + vzcz  

It can also be shown that the operator f -  V applied to any variable f can be 

expressed in the computational domain as 

(a .  V)! = u l z  t v f y  + w f z  

= Uf(  + V f q  + W( 
(2.41) 

Similarly, the operator w' .  V which appears in the vorticity transport equation can 
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be transformed as 
(w' * 0)f = w I f =  + L"2fy + w3fz 

- 
where R is the unscaled contravariant vorticity vector defined as 

- 1. Governing equations in transformed coordinates 

The  continuity equation can now be written in transformed 

L Jrl 

0 

(2.42) 

(2.33) 

rdinates as 

(2.44) 

The  Poisson equations for the vector potential functions can be transformed simi- 

larly employing the same metric groupings and can be written in a compact vector 

form as 

(2.45) 
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In the  same transformed coordinates the Crocco relations are given as 

vu3 - ww2 = - T ( & q  + 77zsq + s z q )  

(2.46) 

us2 - V U ]  = - T(,c,Sf t qzsq + qzss) 

while the vorticity transport equation (2.32) is written as 

-), + (--- A[;,': + 47CC3, + 
t (6 . v)q 

(2.47) 

AFV,'f + AVVdV + s 4 q ; ~ r  

J J 

and the entropy convection equation is given as 

US[ + vs, t ws; = 0 (2.48) 

The consist.ency equation for the vector potential functions takes the form 

v .  B = v t .  B: + vq. BV + vq. Bi = 0 

E. Numerical Algorithms 

(2.49) 

(2.50) 

(2.51) 

The dual potential formulation outlined in the previous sections has several 

advantages. In an iterative solution scheme the governing equations (2.44) - (2.51) 



26 

are weakly coupled and hence can be solved separately. Because of the uncoupling, 

efficient solution schemes can be used for solving each individual equation. The  

actual iterative solution strategy for inviscid and viscous flow will be presented in 

Chapters I l l  and IC'. The numerical algorithms for the individual equations are 

described below. 

The  Poisson equations and the continuity (full potential) equations are con- 

ventionally differenced (i.e.. central) and are solved with ADI-like procedures that  

use a sequence of relasat ion parameters. The  convection equations are differenced 

using upwind differencing in t or ( and central differencing in the other directions. 

An implicit 2-factor approximate factorization ( A F )  method is being used as the 

relaxation scheme. Tangency and boundary consistency relations are enforced using 

one-sided differencing in the direction normal to  the boundary surface and central 

differencing in the other two directions on the boundary surface. An AD1 procedure 

is also used to relax the consistency and tangency boundary values. The  following 

notation is used in describing the numerical algorithms. In the uniform computa- 

tional domain, A <  = Aq = As = 1 .  The indices j ,  k , l  refer to grid points in the 

f-, 1 1 - ,  and (-directions, respectively. Generally a subscript is not shown unless it 

varies; for example, uk+l = u3,k+1,1. The difference operators are defined in terms 

of the shift operator E?'u, = uJ31 as 

(2.52) 
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Second-order accurate one-sided difference operators are defined as 

(2.53) 

_ _ _  1 .  AD1 alporithm for the continuity and Poisson equat,ions 

The continuity equation for 4. equation (2.44), is updated using an approximate 

facdorization (ADI-type) algorithm in delta-form. The steady-state form of the one 

described in Bridgeman et al. (1982) is used and details can be found there. The 

differencing scheme, in A F  form, is given by 

(1 - h6,(ii24.'c)"6,]i1 - h60(jA""))"So][1 - h6;(jjA")n6;] 

i (o"* ' 4") = hw [b,(iU")" + 8v(GVd')" i- 6c(lj\Y9)n 

-1 
(2.53) 

U B  V B  W B  
f - 6 : ~  t -6vp + -66;~ - R J J J 

where f i  7 p / J .  and the superscript n refers to the iteration level. The  differencing 

of the contravariant velocity component terms tha t  appear on the right-hand side 

of equation (2.54) is illustrated by considering Ud and U B .  Central differencing in 

space is used throughout, except for 4 terms which are associated with a second 

derivative in t. Thus, 

and 

(2.56) 



associated with second derivatives in 11 alone and < alone. respectively. 

The  frce-stream subtraction term. R x ,  appearing in the right-hand side of equa- 

tion (2.54), accounts for incomplete metric cancellation (Bridgeman et al., 1982) and 

is given by 

(2.58) 

An AD1 algorithm is used to  solve equation (2.54). Rewriting equation (2.5-1) 

in the  form 

L(L,L,(q5"" - @) = R (2.59) 

t,he .4DI algorithm is implemented in three steps as 

L,A$* = R 
b 

L,44** = Ad* 
(2 .GO) 

L;A@+' = Ad** 

4nS1 ~ q5n + 
The  algorithm given by equation (2.59) requires only a series of scalar, tridiago- 

nal inversions and is, therefore, solved efficiently. It may also be noted that  the 

rotational terms only appear explicitly in the residual. The  relaxation parameter 

h,  which appears in equation (2.54), is determined from the geometric sequence 

(Ballhaus e t  al., 1978): 
- I  1 

, i = 1 ,2 ,3  ... N (2.61) 
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where X = l / h .  A second overrelaxation parameter w is used t,o scale the residual. 

Each of the Poisson equations for the vector potential functions is updated in a 

similar manner, which results in the A F  form, 

(2.63a) 

(2.6313) 

2. Convection differencing and relaxation 

The differencing used with the convection equation is illustrated by considering 

the entropy convection equation in general coordinates: 

US( + vsv t ws, = 0 (2.64) 

Assuming U is generally larger than V and W,  this first order wave equation is 

discretized by using three-point, second-order-accurate central differencing in the 



q- and <-directions, and three-point, second-order-accurate upwind differencing in 

the E-direction. Upwind differencing of Us:  is aut,omatically achieved using 

(2.66) 

The convection equation is then solved using the AF relaxation algorithm 

(2.67) 
( I  + hU'6; + hW6,) ( I  + hIJ-6: + hV6,,) (sntl  - sn 

= - h  ( U + d  + U-6f t V6,  + W b ,  ) S" 
where h is another relaxation parameter ( h  ; 0). Because central differencing 

is used in the q- and <-directions, it is necessary to  add fourth-order nurnerical 

dissipation terms to the differencing scheme to  control the odd - wen uncoupling 

of grid points and to  control any nonlinear effects such as shocks (Pulliam, 1985). 

This is done explicitly in the numerical algorithm in order t o  be  able to invert only 

tridiagonal matrices in the q- and <-directions. Second-order implicit dissipation 

is added to stabilize the explicit fourt,h-order dissipation for large values of the 

relaxation parameter h. Adding the numerical dissipation terms to the differencing 

scheme given by equation (2.67) results in the following scheme for the convection 

equation. 

( I  + hU'6: + hW6, - 3h/WlAVl , ) ( l  + hU-6; + hV6, - 3hlVlAV1,) 

K ( s ~ & '  - s n )  = -h  [U'6! + U-6f + V6, -+ WbC + I V l ( A V ) 2 / ,  + IW/(AV)21;]s'L 
(2.68) 

Since the second-order dissipation terms are added implicitly, they do not change the 

steady-state solution of the convection equation. The  algorithm given by equation 
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(2.68) is implemented in two steps as 

( I  + hU+b! + hW6, - 3hjlVlAO/,)As* = 
(2.69) 

--h [u+bt + U - 6 :  + V6,  + W 6 , -  t iV/(SV)'Iq + : W l ( A V ) 2 ! . - ] ~ "  

( I  -I ht'-6! -+ hC'6, - 3h:ViAV/ , ) ( sn+ '  - s") = As" (2.70) 

In the first step, a forward sweep in is achieved by requiring a series of tridiagonal 

inversions in q. In the second step, a backward sweep in ( is achieved by requiring 

a series of tridiagonal inversions in 7. 

A similar algorithm can be used for solving the vorticity transport equations 

(2.47) by replacing the numerical dissipation terms with the viscous diffusion terms. 

The details of the algorithm used for solving the vorticity transport equation will 

be presented in Chapter IV. 

3- Integration algorithm for vorticity 

The  consistency relation for vorticity, equation (2.51), is used to integrate L C ' ~  

in the (-direction from an upstream boundary to the outflow boundary. Equation 

(2.51) can be represented in the form 

where f = w l ,  a1 = (=, a2 = q2, a3 = sz, and a4 contains the remaining terms of 

equation (2.51). 

Consider differencing this equation on a j-plane using first-order one-sided dif- 

ferencing in and central differencing in 9 and c. That is, at the j t h  plane 

(h+l - f i -1)  I . =  
3 a4 2 

+ a3 

(2.72) 



Putting into the delta form, f3 - fj-1, dividing by a l ,  and approximately factoring, 

this difference equation is written as 

If three-point, second-order foruard differencing is used for f:, this becomes 

(2.73) 

Note that this approximate factorization is using a space delta, not an iteration 

delta. First-order backward differencing is used a t  the first ( = constant plane, and 

second-order differencing is used at all successive planes to  integrate the consistency 

relation for w1. At each <-plane, the algorithm requires a series of simple tridiagonal 

inversions in 77 and 5. 

4. Consistency boundary condition 

The consistency relation for the vector potential functions is implemented at, 

boundary surfaces by a procedure similar to  the one described above for integrating 

the vorticity consistency relation. Consistency boundary conditions are illustrated 

below for the case in which the body boundary-surface coincides with a 5 = constant 

plane. Other boundary surfaces receive similar treatment. 

Differencing equation (2.50) on the < = constant surface, 1 = 1, using first-order 

one-sided differencing in 5, and central differencing in ( and q ,  gives 

(2.75) 
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where 
a4 = - [ ( L 6 : f p  -t ~ z 6 q f i  + szACfi) 

(2.76) 

Putt ing this into the delta form, $1 - djz ,  dividing by -cz ,  and approximately 

+ ( V , C x  + Vy&X + syA<x)I 

fact,oring, the difference equation 

is solved on the surface for ($1 - T,!J~) by inverting tridiagonal matrices in and 

then in 77. If three-point second-order forward differencing is used for ;-derivatives, 

equation (2.77) is modified in the same way tha t  equation (2.73) is changed to 

equation (2.74). 

j- Tan gen c i b o u n d  arry con d i t ion 

Tangency or no-flow-through is inipohed o n  a boundary surface by setting the 

appropriate contravariant velocity component t.o zero. On a < = constant plane, 

W is set to  zero. Tangency is enforced through implicit boundary conditions on 4, 

which are  obtained by solving the continuity equation at the half-cells neighboring 

a solid boundary. The procedure is illustrated by considering a finite-difference cell 

(Figure 1). The  center of the cell is located at ( j ,  k , l  + f ) .  The  finite-difference 

form of equation (2.44) can be written as 

(2.78) 
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Figure 1. Finite-difference cell near a wall boundary 
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Evaluating variables a t  1 + by weighted averaging between I and I + 1 as, for 

example , 

where 

3 1 
' j +  $ ,k , l+  a 1 = -u .  4 j + l , k , l  1 4- , ' j+$,k,l+l 

1 (2.79) 

(2.80) 
C -  

-I- - ( - A ; +  3-0~ AI + A:'A<~@~) t vector potential terms 
2 

equation (2.78) can be written as 

1 1 

(2.81) 
( I  + d A < ) ( b v ) k + b  - ( 1  -k i A t ) ( b v ) k - &  + 2(bW)I,i 3 = 0 

To facilitate the application of approximate factorization, the cross-derivative and 

vector potential terms are lagged in ti:ile in the usual way to obtain the relaxation 

algorithm 

[ I  - h6f(fiA")"6:]ll - h6r,(fiAy'f')n6,/j/l  - 2h(b.4*-);, , Ail 

x (f#P+ I - (P) = hw{&f(/iC')n + 6,(jjV)" + 2(biv)n l +  4 

+ -A<[6f (@r i")  + 8,(bVn)J} 

(2.82) 

1 
4 

Equation (2.82) is of the same form as equation (2.54) and hence tangency can be 

enforced implicitly in the AD1 algorithm given by equation (2.59) with the tridiag- 

onal and right-hand-side terms modified appropriately. 
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111. INVISCID R O T A T I O N A L  FLOW 

For many practical flow situations, the  inviscid approximation gives a very useful 

and accurate estimate of the flowfield. This is especially true when viscous effects 

are small and confined to a thin shear layer adjacent t o  the wall and when the flow 

remains attached and does not separate, thereby diffusing and convecting vorticity 

into the outer flow. In this chapter, t h e  solution scheme for the Euler equations is 

presented together with applications to  inviscid three-dimensional rot,ational flow. 

The  approach taken is to increase the complexity of the  approximations regarding 

the flow. First, the solution t o  an irrotational inviscid flow is obtained. Then ,  

an inviscid solution of the secondary flow produced by a nonuniform stagnation 

pressure is obtained. In particular, the three-dimensional dual potential procedure 

outlined in Chapter I1 has been used to simulate the flow through the inlet of a n  

indraft wind tunnel and numerical results for this case are presented in this chapter 

along with some experimental data  for comparison. 

A. Solution Strategy 

The dual potential formulation outlined in the previous chapter has several 

advantages. In an iterative solution scheme, the governing equations (2.44) - (2.46), 

(2.48) - (2.51) are weakly coupled and hence can be solved separately as described 

below. The  rotational and irrotational components of velocity are also decoupled. 

As a result, the  vector potential functions need be determined in only the rotational 

part  of the  flow domain. 

Because the equations are weakly coupled, an efficient iterative solution pro- 

cedure can be  used with each equation updated sequentially using the numerical 

algorithms described in Chapter 11. At  each grid point an initial guess is made for 



values of 4, 19, x, d ~ ,  s, p ,  and for ~ 1 ,  w2, and wy. The following it,eration scheme is 

then implemented: 

1 )  Vector potential functions, 19, x, t / ~ .  Individually update 6 ,  x, and 4) from the 

Poisson equations given by equation (2.45) for assumed values of wl,w2, and w3. 

Boundary conditions for these equations are kept conipatible with the consistency 

relation, equation (2.50).  

'2) Scalar potential function, 6. l 'pdate 0 from the continuity equation (2.43) 

using the ADI-like algorithm for the transonic full  potential function arid previously 

updated values of 6 .  x, and t+!J. 

3) Entropy, s. Using updated values of 19, x, t+!J, and 4 ,  evaluate I J ,  V ,  and W and 

update s from the convection equation (2.48). 

4 )  DensitLp. ITpdate density from the Bernoulli equation (2.28), using previ- 

ously updat,ed values of u , t ~ , w ,  and s. 

5) Vorticities, L L ' ~  ,u?, and wy.  Vorticity components are evaluated from Crocco's 

equations and the consistency relation for vorticity. Assuming u > J v J  and Iwj and 

u sf 0, w2 and w3 are evaluated from equation (2.46) as 

w2 = [vwl - q l z s f  + rlzsr/ f w)] /. 

[WWl + T( l ,s :  + rl+r/ + s,..)] /. 
(3-1) 

w:j 

and w l  is determined from the vorticity consistency relation, equation (2.51). 

6) Test for convergence and, if necessary, return t o  ( 1 ) .  

For incompressible flow, density is taken to be constant, and Crocco's equations 

and the entropy convection equation are replaced by Lamb's equations and the total 

pressure convection equation, respectively. In this case, w2 and W Q  are evaluated as 



and w l  is again determined from the vorticity consistency relat,ion. 

B. Geometry and Grid 

A s  a first application, the three-dimensional dual potential procedure outlined 

above was used to  compute the flow through the 80- by 12O-ft leg of the National 

Full Scale Aerodynamics Complex (NFAC) at the NAS.4 Ames Research Center. 

A view of the complex is shown in Figure 2. Screens and vanes are placed at  the 

entrance of the inlet in order to isolate the test section from outside winds. Also, 

the screens prevent birds and other objects from entering the tunnel. The presence 

of these screens and vanes is accounted for in the numerical simulation as a jump 

condition based on actuator disk theory. The contraction ratio for the tunnel is 5:1 

and the Mach number in the test section does not exceed 0.2. The fluid is, therefore, 

assumed to be incompressible in the numerical procedure. 

A three-dimensional grid to model the 80- by 120-ft leg of the NFAC was gen- 

erated using simple algebraic shearing. Figure 3 shows a view of the tunnel walls 

and floor. A comparison of Figures 2 and 3 shows that the grid represents the 

NFAC accurately except for the rounded lip at the entrance of the inlet. To avoid 

a complex grid generation task, the rounded lip was not modeled. Since the 80- 

by 120-ft wind tunnel rests on the ground, the grid and the boundary conditions 

must model the ground plane in order to obtain the correct inflow conditions. The 

computational domain includes the wind tunnel and its surrounding region to facil- 

itate the  application of boundary conditions in the  far-field. All calculations were 

performed on a 39 x 41 x 34 grid of which 26 x 17 x 21 grid points are interior to 

the wind tunnel. The tunnel walls are modeled to have a thickness equal to a single 

grid increment. The  actuator disk modeling the screens and/or vanes is located at 
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Figure 2. ‘The Kational Full Scale Acrodynarriics Clorriplex 
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Figure 3. Perspective view of the grid for the NFAC inlet model showing 
the ground plane and tunnel walls 



a E = constant plane corresponding to  the location of the trailing edge of the vanes 

in the actual configuration. Figures 4 and 5 show views of three different planes 

of the grid. A detail of the grid is given in Figure 5 to illustrate the modeling of 

the tunnel walls. The  average width of the test section, 100 feet, was chosen as the 

reference length in the calculations. and all results are presented accordingly. 

The flow is assumed to be irrotational outside of the tunnel, and only the 

potential function, 4, needs to  be computed there. lipstream and in the farfield, the 

value of the potential is kept constant a t  its free-stream value. At outflow, outside 

the tunnel, the streamwise component of velocity is allowed to vary by using a 

zero-gradient boundary condition on U .  Tangency is enforced a t  the ground plane 

and a t  all the tunnel walls (interior and exterior) through the implicit boundary 

conditions on c$ described earlier. The  flow rate through the tunnel is determined by 

specifying the axial velocity a t  the outflow boundary within the tunnel. On each 

tunnel wall, the  vector potential corresponding to  the near-normal direction to  the 

surface is obtained from its consistency relation. and the other two vector potential 

functions are kept constant. For example, on the ground plane < = constant, I9 and 

x are set to zero, while + is obtained from equation (2.50). A t  the outflow boundary 

are obtained using a second-order extrapolation technique, = constant, x and 

whereas I9 is computed from the vector potential consistency relation. 

In the absence of any screens and/or vanes, the entire flow is assumed irrota- 

tional and hence only 4 needs to  computed, with the other variables being constant. 

With screens and vanes, a total pressure loss across these devices sets up a rota- 

tional flow field inside the tunnel which is accounted for by solving for the total 

pressure (incompressible formulation), vorticity, and the vector potential functions. 

I t  is necessary to  solve for these variables only within the tunnel since the flow 
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Figure 4.  Cross-sectional views of the sheared grid for the 80- by 120-ft leg 
of the NFAC. a) Grid in the y-z plane at inlet entrance; b) Grid 
in the z-z plane at mid-span 
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TUNNEL WALL w 
~ 

Figure 5. Cross-sectional view of the sheared grid for the 80- by 120-ft leg 
of the NFAC in the s-y plane at mid-height 
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upstream of the vanes and screens is taken to  be irrotational. Inflow boundary 

conditions for total pressure and the vector potential functions are obtained from 

t,he actuator disk model for the vanes and screens. 

C. Actuat.or Disk Model 

The presence of vanes and screens at  the entrance of the wind-tunnel inlet is 

modeled using actuator disk theory (Horlock, 1978; Ross et al., 1986) in which these 

devices are idealized to  a jump condition. Vanes and screens constrain the flow in 

some specified direction and produce a drag force opposing the motmion of the fluid. 

The  drag or resistance produced by vanes and screens can be expressed in terms of 

the  total pressure loss across the actuator disk model. For a given screen or vane, 

the total pressure drop can be  determined empirically as a function of the local 

dynamic head as 

(3-3) 
1 2  Po:! = Po,  - K - i q  2 

Here, the subscripts 1 and 2 refer to locations immediately upstream and down- 

stream of the actuator disk as indicated in Figure 6. The loss coefficient K is 

empirically determined as a function of the local Reynolds number, onset flow an- 

gle, and the geometrical characteristics of the screens and vanes. The  contribution 

to  the loss coefficient from the vanes and the screens may be separated into two 

components as 

K = K ,  + Ks (3.4) 

where K ,  denotes the vane-loss coefficient and Ks the screen-loss coefficient. 
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_ _  

Figure 6. Deflection of flow through an actuator disk model for a screen 
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- 1. Flow throuph a screen 

The  screen is modeled as an  actuator disk located in the flow field as indicated 

schematically in Figure 6. Variables at the locations upstream and downstream 

of the disk are denoted with the subscripts I and 2. respectively. The following 

equations describe incompressible flow through the disk. 

Continuity: 

U ]  = "2 (3.5) 

Momentum in z-direction: 

where D, is the drag force in the  z-direction and is obtained from the characteristics 

of the  screen and the upstream flow conditions. The  loss coefficient, based on the 

static pressure drop and expressed as a function of the dynamic head is found to 

be a function of the local Reynolds number, (Re), for onset angles, a, u p  to  40". 

Tha t  is, 

In addition to creating a pressure drop, the  screens have the effect of straight- 

ening the  flow through them. It is found (Horlock, 1978) that  at a given Reynolds 

number, the change in the tangent of the flow angle is a function of the  upstream 

flow angle, tha t  is, 

tan a1 - tan a2 = f ( t an  a l )  (3.8) 

or 

u1 tan a1 - u2 tan 0 2  = F(u1 tan a l )  (3-9) 



For onset flow angles up to 40°, the  change in the tangent of the flow angle is found 

to  be proportional to  the upstream flow angle, that  is 

c1 - c2 = CCl (3.10) 

M here c = 21 tan o = ( v 2  + ui2)'i2 is the lateral component, of veloci ty .  

The empirical parameters. K,, and C are determined from the upstream con- 

ditions and the physical screen characteristics (porosity, wire diameter). An addi- 

tional simplification is achieved by assuming that  equation (3 .10)  is valid for both 

tangential components of velocity, that  is, 

Vl - V 2  = C V l  

UJ] - U'2 = C W l  

The total pressure drop across f he screen is given by 

(3.1 1 )  

(3.12) 

(3.13) 

which reduces to 

K ,  = K,,, t ( 2 ~  - ~ ~ ) s i n ~ a l  (3.14) 

The two constants, K,, and C needed t o  det.ermine the total pressure loss for 

the NFAC have been determined experimentally and reported by Ross et  al. (1986) 

and van Aken (1986). 

- 2. Flow t h rowh  vanes 

In addition to  screens, many wind tunnels employ a a cascade of vanes at the 

entrance in order to assist in providing a uniform test-section flow. The distribution 

of the splay angle of the cascade is an important factor in minimizing the variation 
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in test-section total pressure (Ross et  al., 1986). The loss coefficient for the cascade 

is a function of the individual drag coefficient of the vanes including its geometric 

characteristics such as the pitch, chord and solidity. For the 80- by 120-ft leg of the 

NFAC, the loss coefficient for the cascade is obtained from van Aken (1986) and is 

found to  be 0.4. Another important effect of the cascade is tJo direct, the flow a t  

the  inlet entrance at a specified angle thereby determining the lateral component 

of velocity as 

v2 = u2 tan 8 (3.15) 

where 8 is the splay or turning angle. Various splay angle distributions were tried 

for the NFAC and have been reported by Ross et al. (1986). Finally, it may 

also be useful and even necessary, as in the case of the NFAC to control the vertical 

component of velocity, UT. This is done by the construction of splitter plates, running 

laterally between the two side walls of the tunnel. which are located at different 

heights of the  vanes to form something like a honeycomb screen a t  the inlet entrance. 

For the NFAC the splitter plates have been constructed horizontally along the width 

of the tunnel, so that the fluid leaves the plates without a n y  vertical component of 

velocity, that  is, 

"2 = 0 (3.16) 

The coefficients K v ,  K , ,  and C used in this study are based on the experimental 

da ta  of Ross et  a]. (1986) and van Aken (1986). Except for one case (Figure 9), 

values of K ,  = 1.8, K ,  = 0.4, and C = 0.2 were used in the numerical simulations. 

- 3. Implementation of actuator disk model 

This actuator disk model is implemented in the numerical simulation by adopt- 

ing the following procedure at each iteration level. Letting j be the grid point at 



which the actuator disk is located, and using the subscripts 1 and 2 for values just  

upstream and downstream of the disk, 

0 u l . i i l , w l  a t  j are calculated from equation (2.33) using backward differences 

for the J- or f-derivatives, that  is. making use of values at j and j - 1 .  

0 p o .  at j is calculat,ed from equation (3.3) using appropriate values of h-. It may 

be noted tjhat P O ,  is a constant for t,he irrotational flow upstream and hence 

known from free-stream conditions. 

0 v2  and w2 at j are calculated using equations (3.11) and (3.12) for screens alone 

or equations (3.15) and (3.16) for screens and vanes. 

0 w l  at j is calculated from its definition using values of v2 and w2 as 

w1 = wy - Dz (3.17) 

0 19 is set t o  zero a t  j. 

0 x and 11, at j are calculated so that  v p  and w2 are prescribed using forward 

differences in z as 
dJJ = d J J t l  - ( 4 y  - V 2 ) A Z  

xj = XIS1 - (w2 - 
(3.18) 

0 Finally, the continuity equation through the actuator disk, equation (3.5), is 

Tha t  is, enforced by evaluating 4 at j using appropriate differencing in z. 

equation (3.5) is differenced as 

Collecting terms involving 4 on one side, the above equation can be rewritten 

as 

(3.20) 
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This constraint on 4, is enforced implicitly in the AD1 algorithm for 4 to ac- 

celerate convergence and improve stability. 

D. Results and Discussion 

-4s a simple verification of the numerical procedure, Figures 7 and 8 show so- 

lutions obtained for potential flow alone ( K  = 0) compared with other numerical 

computations and experimental data as taken from Kaul et al. (1985). The exper- 

imental results presented throughout were obtained from a 1 /15-scale model of the 

NFAC. Figure 7 shows the  variation of the pressure coefficient, Cp = (p- p t ) / i p u ; ,  

on the side wall versus length a t  mid-height of the tunnel. Here, the subscript t 

refers to the test section, which is a t  the outflow boundary in the present simula- 

tion. Experimental data  are also plotted in Figure 7 and the agreement between 

the  present results and the experimentally measured values is quite good. The  spike 

in the present results is likely a result of the simple lip treatment. Figure 8 is a 

comparison of the pressure coefficient along the center of the tunnel floor, with Eu- 

ler and panel methods. The  panel method results agree very well with the present 

results, whereas the Euler method differs in the entrance region of the inlet. These 

calculations required about 5psec per iteration per grid point on a CRAY XMP 

vector processor and fully converged results were obtained in 900 iterations which 

correspond to  about 240 sec of CPU time. 

- 2. Rotational flow 

In the design of wind tunnels, it is, of course, essential to maintain uniform 

flow in the test section, and screens and vanes (located upstream of the test sec- 
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tion) are frequently used to  improve the flow quality in the test section and isolate 

the wind tunnel from external turbulence. However, these devices induce a total 

pressure loss that  varies with the upstream dynamic pressure. If they are placed in 

a region with substantial variation of upstream velocity, they can induce a signif- 

icant total pressure variation (and. therefore, rotational flow) that can persist far 

downstream. Placing a screen in the wind-tunnel inlet can therefore induce an un- 

desirable nonuniform flow in the test section. This effect is demonstrated in Figure 

9 for the original NFAC inlet; the figure shows the variation of the dynamic pressure 

in the test section with the spanwise distance, y, at mid-height in the tunnel. The 

quantity plotted in this figure is the normalized d>namic pressure, (q /qc1)2 ,  where 

the  subscript cl refers to  the centerline. Three numerical results are shown in the 

figure: screens alone, screens and straight vanes. and screens and splayed vanes. In 

one case, the vanes are straight, that is. the! arc aligned with the axis of the tunnel 

18 = 0 in equation (3.15)j just as in the original NI;,4C design. In the other case 

the vanes are splayed a t  angles developed for the redesigned NFAC (Ross et al., 

1986; van Aken, 1986). Along with the numerical results, experimental da ta  from 

a 1/15-scale model with straight vanes (van Aken, 1986) are also plotted in this 

figure. The  agreement with experiment is relatively good and indicates that  the 

original inlet configuration results in an unacceptably high variation of flow quality 

in the  test section. 

A numerical and experimental study of the NFAC (Ross et al., 1986) resulted 

in a slight modification to  the inlet geometry. The  curved walls in the span (or 

y-direction) were replaced with straight walls near the entrance of the inlet and 

the  vanes were splayed a t  angles tha t  are close to the “ideal” streamline angles 

at the entrance of the inlet. A schematic view of this new geometry is shown in 
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Figure 10; again, the true lip geometry is not represented. Results obtained for 

this modified tunnel are shown in Figures 10-14. Also shown in these figures are  

experimental data from a 1/15-scale model (van Aken, 1986). Figure 10 shows the 

variation of the tot a1 pressure coefficient, ( P O  - PO,,),' Z p q c 1 ,  with spanwise distance at  

mid-height of the test section. Again, two splay distributions were examined: zero 

splay angles and the redesigned splay distribution. The results show a dramatic 

improlement in test-section flow quality for the case of splay distribution and the 

agreement with experiment is good except near the walls. This is perhaps expected 

because viscous effects are not taken into account in the present procedure and the 

correct lip geometry is not modeled. Figures 11 through 14 compare predictions 

with measurements of the dynamic pressure a t  various height and span locations 

in the test section. Overall, the agreement with experirnent is sat isfactory except 

near the walls. 

1 2  

The above calculations were performed with zero free-stream velocity, that, is, 

with no wind outside the tunnel. With the present code, a variety of outside wind 

conditions can be simulated by changing the far-field boundary conditions on 4 ( in-  

cluding rotational incoming flow if the vector potential functions are solved there). 

The  effect of wind direction on the test-section flow quality was studied by simulat- 

ing a case in which the wind velocity was about  15% of the test-section velocity and 

blowing at an angle of 45" with respect t o  the axis of the tunnel. The  results are 

presented in Figure 15, along with results for the case in which the wind was blowing 

at 0". Figure 15a shows the spanwise variation of dynamic pressure a t  mid-height, 

and  Figure 15b shows the variation of the dynamic pressure with height a t  mid-span 

of the test section. The  results indicate tha t  the vanes, inlet length, and screens 

d o  a relatively good job of isolating the test section from such extreme variation in 
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external flow conditions. This has been confirmed experimentally though quantita- 

, tive data  are not available for comparison. Figure 16 shows the velocity vectors in 

the horizontal and vertical planes a t  midspan and midheight, respectively, for the 

case in which the wind is at an angle of 45". 
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IV. EVALUATION OF A DUAL POTENTIAL - 
BOUNDARY LAYER INTERACTION SCHEME 

The dual potential decomposition scheme was applied to compute inviscid irro- 

tational and rotational flows in Chapter 111. It is possible to  use the same formulation 

to compute viscous flows by additionally solving equation (2.47) for the transport of 

vorticity. Most numerical techniques for equations of this type are notoriously inef- 

ficient because of the multiple length scale phenomena that  arise in high Reynolds 

number viscous flows. Wi th  the dual potential formulation presented earlier, it 

might be possible to take advantage of the speed and efficiency of boundary-layer 

algorithms to compute the vorticity - which can be used to determine the veloc- 

ity field by solving the Poisson equations for the vector potential functions. The 

validity of such an interaction scheme for separated flow is examined in a prelim- 

inary way by  computing the flow over a two-dimensional configuration which has 

been studied by others using conventional viscous-inviscid interaction schemes. The  

present dual potential interaction scheme is also applied to compute the attached 

flow over a three-dimensional trough configuration. These three-dimensional results 

are compared with other numerical data. 

The three-dimensional boundary-layer equations are presented in 5IV.A. A re- 

duced version of the dual potential formulation for two-dimensional viscous flows is 

also presented in this section for convenience. The interaction scheme between the 

dual potential and boundary-layer equations is discussed in 5IV.B. Applications of 

the present interaction scheme to two- and three-dimensional trough configurations 

are presented in 5IV.C and 3IV.D respectively. 

All the calculations presented in this chapter were made with the flow assumed 

to be incompressible (density was assumed to be constant). 
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A. Governing Equations for Viscous Flow 

- 1. Three-dimensional boundary-layer equations 

The boundary-layer equations are  derived from the Navier-Stokes equations 

using an order of magnitude analysis (Schlicting, 1979). The basic assumption in 

deriving the boundary-layer equations is Prandtl's hypothesis that  for sufficiently 

large Reynolds numbers, there is a thin layer adjacent to the wall where viscous 

effects are at least as important as inertial effects. It is found from an order of 

magnitude analysis that viscous diffusion terms in the streamwise direction are 

negligible. Further, it is found that  pressure variations in the normal direction are 

negligible and the normal momentum equation need not be solved. To distinguish 

the boundary-lager variables from the dual pot,ential ones, boundary-layer variables 

are indicated with bars (-). In a regular Cartesian coordinate system, the boundary 

layer equations for steady, incompressible laminar flow are (-4nderson et  al., 1984): 

continuity: 

u z  + 84 + wz = 0 ( 4 4  

streamw ise. 3-momentum: 

p(uuz + vug + wu2) = - p z  + u,, 

cross-flow, jj-momentum: 

In these equations, the variables are nondimensionalized by free stream values as 

indicated in Chapter 11. Also, the normal coordinate z and the corresponding veloc- 

ity component w are scaled by the square root of the free-stream Reynolds number 



Re so tha t  they may have the same magnitude as the  streamwise components (for 

laminar flow). 

- a. Boundary conditions At a solid wall boundary, the no-slip boundary con- 

dition was applied: 

If no  streamwise separation is present, these equations can be solved with pres- 

sure specified as the forcing function (the direct mode), where the pressure is cal- 

culated from the inviscid flow variables. Near and in reversed-flow regions, the 

boundary-layer equations are solved in the inverse mode to avoid saddle-point be- 

havior at the separation point,. To solve the momentum equations in the inverse 

mode, the boundary conditions are modified so that  inverse forcing functions can be 

specified. In conventional viscous-inviscid interaction approaches, the inviscid flow 

is computed over a equivalent body rather than the actual body surface. that is. 

viscous effects are assumed to  have t,he effect of altering the effective body surface 

by an  amount equal to the displacement thickness and it is perhaps convenient to  

specify the displacement thickness as the inverse forcing function (cf Carter and 

Wornum, 1975; Kwon and Pletcher, 1978; Lee and Pletcher, 1986). However. fol- 

lowing the work of Klineberg and Steger (1974), and Van Dalsem and Steger (1983), 

the  wall shear stress is specified as the inverse forcing function in this study. The  

inverse forcing function is specified in the solution scheme by replacing the direct 

forcing functions (pressure terms) with expressions containing the inverse forcing 

functions. In the present procedure, these relations were obtained by evaluating 

the momentum equations a t  the wall. For example, the %-momentum equation 

evaluated at the wall gives 

p3  = ijzz (4.5) 



-4 Taylor series expansion about a point at the wall gives 

Defining the nondimensional shear stress at t.he wall as 

and making use of equations (4.5) - (4.6) gives the following relationship between 

the pressure gradient and the component, of wall shear stress in the %-direction: 

In this work, the wall shear stress ( T ~ , ~ )  was used as the inverse boundary 

condition, and the inverse method was used in only the %-momentum equatioii. 

with the y-momentum equation solved in the direct mode. The inverse nrct,hod can  

be used even for attached flows, though it was used mainly in the separated flow 

regions in this study. 

The boundary-layer equations shown above were solved using the relaxation 

method given by Van Dalsem and Steger (1985). The  numerical algorithm is writ- 

ten to  solve the equations in a transformed domain which is a uniformly spaced, 

rectangular coordinate region, using upwind differencing in the streamwise and 

spanwise directions, and central differencing in the normal direction. Details of the 

transformation and the numerical schemes used can be obtained from Van Dalsem 

and Steger (1985). 

In analyzing three-dimensional boundary-layer solutions, it is useful to  define 

some dimensionless parameters such as the wall shear stress components rwz ,  rWy; 
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and integral thicknesses 6,, 6, as 

in which the subscript e refers to values at the edge of the boundary layer. Note 

1 
that  in these definitions, the normal coordinate t is scaled by Re5 

Unlike two-dimensional flows, the integral thickness 6, is not, the correct mea- 

sure of the displacement effect of a three-dimensional boundary layer. For three- 

dimensional flows, Moore (1953) showed that the displacement thickness 6' has to 

account for cross-flow effects. He derived a partial differential equation for the dis- 

placement thickness, which, in terms of the integral thicknesses defined in equation 

(4 .9) ,  is given as 

a a 
- jz1,(6* - b7); - (Oe6* - "6,) = 0 ax ay 

(4.10)  

From a known solution of the boundary-layer variables, it is relatively easy to 

numerically solve the partial differential equation given by equation (4.10) and 

obtain the displacement thickness. For the geometries considered in this study, the 

flow was assumed to be two-dimensional at the inflow boundary, and hence, 6* = 6, 

there. With known values of Ue, f i e ,  6=, and by ,  an integration algorithm similar to  

that used for integrating the vorticity in fjII.E.3 was used t o  obtain the displacement 

thickness. 



2. Two-dimensional dual potential equations 

It is, of course, possible to use the t,hree-dimensional formulation to compute 

two-dimensional flows. However, it is more convenient to present the dual potential 

equations for the two-dimensional case separately. 

- a.  __- Governing equations To retain the terminolog> used earlier. the normal 

coordinate is denoted as z instead of the traditional y. \Vith this convention, 

the governing Navier-Stokes equations for steady, incompressible. laminar two- 

dimensional flow are: 

Continuity : 

ux + w, = 0 

s-momen t um: 

(4.1 1) 

(4.12) 

z-momen turn: 
1 

Re p ( u w ,  + ww,) = -p, + -- ( W X I  + w,,) (4.13) 

Using the dual potential decomposition defined in terms of the scalar potential 

function 4 and t,he stream function >; as 

u = 4 x  - xz 

w = 42 + xz 
the continuity equation is written as 

(4.14) 

vzq5 = 0 (4.15) 

and with the vorticity defined as 

w = u, - wx (4.16) 
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the  s t ream function equation is 

v x = - w  2 

The  momentum equations are written in t.erms of the vorticity as 

1 
Re p(uw, t 2(!WZ) = - - - (  u x 3 :  t wz;) 

(4.17) 

(4.18) 

Note the absence of the vorticity stretching terms in the two-dimensional vorticity 

transport equation. 

b. Boundary conditions Boundary conditions at any boundary surface are 

no-slip and t,angency, that  is, 

u = v = O  (4.19) 

No-slip is enforced implicitly by evaluating t,he vorticity at the wall appropri- 

ately. Tangency is enforced by selecting the stream function to be a constant along 

the surface and computing d appropriately. 

$1 constant; ii V+ 0 (4.20) 

As in the three-dimensional case, vorticity for the interaction scheme was ob- 

tained from a boundary-layer solution. The algorithm used to solve the boundary- 

layer equations was a two-dimensional version of that, used for the three-dimensional 

case (Van Dalsem and Steger, 1985) and is described in Appendix B. 

B. Dual Potential - Boundary Layer Interaction Scheme 

As mentioned earlier, the present 'interaction scheme involves obtaining the vor- 

ticity from the boundary-layer equations. To solve the boundary-layer equations, it 

is necessary to determine the pressure from the dual potential solution. A schematic 
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view of this coupling method is given in Figure 17. Such an interaction scheme was 

proposed and implemented for two-dimensional flows by Steger and Van Dalsem 

( 3  985). 

1 .  Solution ztIateapfor  the interactionschem3 

,4n iterative solution strategy, similar to t,he one used for inviscid flows is used 

for the dual potential - boundary-layer interaction scheme and is described below. 

At each grid point an initial guess is made for values of 4, d .  1. $ * .  and for w1, w2, 

and wg. The  following iteration scheme is then implemented: 

1)  Vectorqotential _ _ _ ~  functions, 8 , ~ $ .  lndividually update 19. >i, and ?+!I from 

the Poisson equations given b! equation (2.45) for assumed values of w1,w2, and 

w3. Boundary conditions for t h e w  equations are again kept compatible with the 

consistency relation, equation (2.50). 

2) Scalar potential function, 4.  Update from the continuity equation (2.44) 

using the ADJ-like algorithm for the transonic full potential function and previously 

updated values of 19,x, and ?+!I. 

3) Pressure, p .  With the velocity components known, pressure is calculated 

by integrating the normal momentum equation from the far field (uniform flow, 

p = p a )  t o  the wall. The numerical scheme employed is similar to  the one described 

in sII.E.3 for integrating the vorticity consistency equation. 

4)  Vorticities, w1, w?, and a. With pressure known, the vorticity components 

are evaluated from the solution of the three-dimensional boundary-layer equations 
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as 

(4.21) 

uJ3 = v x  ~ ug 

Note tha t  the bars o n  the variables at the right hand side of equation (4.21) refer 

t o  boundary-la) er quantities. Also, in accordance with the houndary-layer assump- 

tion, the contribution of the normal velocity is neglected in evaluating d1 and w2. 

Furthermore, the scale factor Re: appears on the righbhand-side of equation (4.21) 
1 

since the normal coordinate z is scaled by this quantity in the boundary-layer equa- 

tions. 

5 )  Test for convergence and, if necessary, return to ( 1 )  

The numerical algorithm used to integrate t h e  normal momentum equation is 

described below. 

2 Integration scheme for pressure 

In the dual potential - boundary layer interaction procedure described above, 

the boundary-layer equations require the knowledge of pressure from the dual po- 

tential solution. However, pressure is not a dependent variable in the dual potential 

formulation and a method for calculating the pressure from the dual potential solu- 

tion needs to be devised. If the flow above the boundary-layer is irrotational, it is, 

in principle, possible to determine the edge of the boundary-layer (defined as the 

first location in the normal direction 2 where 2 6 ;  t = 0.9995 in this study) and 

evaluate the pressure from Bernoulli's equation applied to the dual potential solu- 

tion at  this height. However, this procedure was found to  be inaccurate for various 

reasons. In particular, in regions of separated flow, there is considerable growth of 

the boundary-layer and the normal pressure gradient in this region is not necessarily 

- 



small in the dual potential solution and it was found necessary to use an  alternative 

method to determine the pressure. Furthermore, with the stretched grids used in 

the calculations. some form of interpolation may be required in determining the 

edge of the boundary layer. Vsing the normal momentum equation appears to  give 

a reasonable estimate of the pressure near the wall from the dual potential solution 

for the geometries and flow conditions considered in this study. \Vith the use of 

the normal momentum equation, interpolation is avoided, and it is also possible to 

compute the pressure for the case in which the outer flow is rotational. 

M’ith 2 assumed to  be in roughly the normal direction to the surface and ne- 

glecting viscous terms, the z-momentum equation (2.2) is written as 

I n  transformed coordinates, this equation becomes 

(4.22) 

(4.23) 

This equation has the same form as equation (2.71) where f = p ,  a1 = &-, a2 = 

77:. os = c z ,  and a4 is the right hand side of equation (4.23). With the pressure 

known in the far field, that  is, at  1 = L M A X ,  p = p,, equation (4.23) can be 

integrated in the -(-direction to obtain the wall pressure using algorithms similar 

to that, given by equations (2.73) - (2.74). First-order backward differencing is used 

at the first < = constant plane, and second-order differencing at all subsequent 

planes. 

3. Interaction scheme for separated flow 

For attached flows, the solution strategy given above is easy and straightforward 

to implement. For separated flow, i t  is not possible to use pressure as the  forcing 
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function, and a way of calculating or updating the shear stress needs to be devised. 

Van Dalsem and Steger (1985) found the following scheme to be fast and reliable 

for updating the shear stress: 

(4.24) 

and used a value of the relaxation parameter LJ z 10. In equation (4.24), p ,  refers 

to  the pressure a t  the wall which is obtained from the dual potential solution by 

integrating the normal momentum equation. Thus. they updated the shear stress 

from the difference between the viscous and the inviscid pressures a t  the wall. The 

viscous pressure p was obtained by using Bernoulli’s equation a t  the edge of the 

boundary layer as 

(4.25) 

From equation (4.8). it can be seen that  there is a direct rclation betwcen t h e  

shear stress and the pressure gradient. In an iterative solution r~iethod, this relation 

can be used to devise a new scheme to update the shear stress. Equation (4.8) can 

be rewritten as 

(4.26) 

When the interaction scheme between the dual potential and the boundary-layer 

formulation converges. t,he residual term rn on the right-hand-side of equation (4.26) 

should be zero. Hence, a formula for updating the shear stress can be formed as 

n (4.27) r,, - r,, - w r  n+l  - n 

where w is a relaxation parameter. Note that  the scheme for updating the shear 

stress at the wall given by equation (4.26) - (4.27) does not require the assumption 

of irrotationality at the edge of the boundary-layer. In fact, it does not require 
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any assumptions or values of variables a t  the edge of the boundary-layer provided 

the pressure gradient from the dual potential formulation can be obtained without 

t,he knowledge of any edge values. This is possible when the normal momentum 

equation is used to obtain the pressure from the dual potential solution. 

C. Flow Over a Two-Dimensional Trough 

The dual potential - boundary layer interaction procedure described above was 

used to compute the flow over a t,wo-dimensional trough which was first studied 

by Carter and Wornum (1975), and subsequently by Kwon and Pletcher (1981), 

Veldman (1981) and Edwards and Cart,er (1985). The algorithm used to solve the 

boundary-layer equations was a two-dimensional version of the three-dimensional 

one given by Van Dalsem and Steger (1985) and is given in Appendix R. The bound- 

ary layer algorithm has been validated for a number of two- and three-dimensional 

flows by Van Dalsem and Steger (1985, 1986a). In  the present study. thc boundary- 

layer code was again verified by computing flow over a flat plate, both in the direct 

and inverse modes. Jn all cases, the agreement with known analytical/numerical 

results was good. The dual pot,ential procedure was  verified in Chapter 111 for in- 

viscid flows. Details of the numerical algorithms for the two-dimensional case arc 

given in Appendix B. The dual potential - boundary layer interaction procedure 

was verified by computing the flow over a flat plate and a detailed description of 

these results will not be presented here. 

1. Geometry and grid 

The geometry considered here is shown in Figure 18. It consists of a flat plate 

with a trough located at some distance from the sharp leading edge. The surface 
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Figure 18. Geometry of the two-dimensional trough 
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of this geometry is described by the function 

z(x) = - i  sech(4x - 10) (4.28) 

The reference length for this configuration is L = 1 rn. The free stream Reynolds 

number based on the reference length is 80,000. In the present calculations, the 

inflow and outflow boundaries for the dual potential set of equations were set to x = 

-2.5 and z = 7.5, respectivel-j and the  outer boundary was set at z = 5 with a mesh 

of 219 x 81 grid points i n  the x and z directions, respectively. Clustering functions 

given by Vinokur (1983) were used in order to cluster points in the streamwise 

direction at  the location corresponding to the maximum depth of the trough, that  

is. r = 2.5. -4 stretching function was used in the normal direction to obtain a 

fine grid in the vicinity of the wall, with the minimum spacing at the wall set to 

0.0001. The grid used to obtain the dual potential solution is shown in Figure 

19. The interaction region extended from z 1 1.0 to  x 4.0 which correspond to 

121 points in the streamwise direction. The boundary-layer grid extended up to a 

distance of 2 = 0.2 with 55 points in the normal direction. The same distribution 

of points in the normal direction as in the dual potential grid was used, hence the 

need for interpolating the vorticity was avoided. For the boundary-layer, a Falkner- 

Skan solution for zero pressure gradient scaled to the appropriate location in the 

%-direction (in this case, 5 = 1.0 from the leading edge of a flat plate) was used as 

the inflow boundary condition. 

Once again, body fitted curvilinear coordinates were employed, and the flow 

domain mapped to  a uniformly spaced rectangular coordinate region. The details 

of these transformations are very similar to that  given for the three-dimensional 

transformation used in Chapter I1 and are given in Appendix B. 
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Figure 19. View of grid for the two-dimensional trough, 1 = 0.03 
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2. Results and discussion 

To verify the boundary-layer code for separated flow, solutions were obtained 

from the code separately with the inverse forcing function Specified. The shear stress 

distribution used as the inverse forcing function was obtained from the results of 

Davis et  a]. (1986) who used the vorticity 'stream-function formulation to solve the 

Navier-Stokes equations. Figure 20 is a plot of the wall shear stress rwz which was 

prcscribed for this case. Figure 21 show comparisons of the pressure p 1 i ( 1  - a,!) 

where ue is the velocity at the edge of the boundary layer, with the results of 

Veldman (1981) who studied the same configuration using a quasi-simultaneous 

viscous-inviscid interaction procedure. The present results are compared with those 

of Veldman because Davis et  a]. (1986) did not present values of the pressure in 

their report. The figure shows good agreement between the present boundary-layer 

result5 a n d  that of Veldman. Convergence was obtained in about 100 iterations 

requiring 20 seconds on a CRAY XMP computer. 

A4tterr~pts to compute the same flow with the dual potential - boundary layer 

interaction procedure failed. however. as it was not possible to obtain a converged 

solution. 

In order to examine the reason for this failure, the vorticity was computed from 

the converged boundary-layer solution (for a specified wall shear stress distribution) 

and used to obtain a converged dual potential solution. Results for this case are 

presented in Figure 22 which is a plot of the streamwise variation of the pressure. 

The  pressure from the dual potential solution was calculated by integrating the z- 

momentum equation from the far-field down to the vicinity of the wall as described 

earlier. Figure 22 is a comparison of the pressure between the dual potential so- 

lution and the result of Veldman (1981) for this case. It can be seen that  there is 
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considerable disagreement between the two curves in the vicinity of the separated 

flow region. This discrepancy between the two solutions is the  apparent reason for 

being unable to obtain a converged interaction solution for separated flows. 

In general, the boundary-layer equations are sensitive t,o the forcing functions, 

tha t  is, pressure or wall shear stress ( c f .  Klineberg and St,eger, 1974; Lee and 

Pletcher, 1986). Any error in these functions generates an erroneous vorticity solu- 

tion which in turn feeds back into the dual potential solution, in this case causing 

an unstable interaction process. 

It should be pointed out  that  the  interaction procedure described in this study 

is different from the more conventional viscous-inviscid interaction procedures in 

which boundary layer effects are imposed on the outer flow as a correction to the 

shape of the body surface. In the current procedure, the dual potential solutions 

are solved over the entire flow domain including the region where viscous effects 

are important, and the viscous effects are accounted for by injecting vorticity from 

the boundary layer equations. Since, in principle, the only approximation made 

is in using the boundary-layer equations rather than equation (4.18) to provide 

the vorticity, the issue arises as to  whether this vorticity is an accurate input for 

the governing dual potential equations. To answer this question, the dual poten- 

tial formulation was modified by obtaining the vorticity directly from the vorticity 

transport equation (4.18) thus avoiding any boundary-layer assumption. To be 

consistent with previous data, however, the specified shear stress described earlier 

was used to prescribe the wall vorticity. Thus, even though the full Navier-Stokes 

equations are solved for this case, the calculation used as its vorticity boundary 

condition the previous known solution obtained by other means. The numerical 
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algorithm for solving equation (4.18) is similar to  the one described in sII.E.2 and 

is given in Appendix B. 

In practice, the boundary-layer vorticity was used at the first two points in the 

normal direction, that  is, a t  E = 1,2 ,  to avoid any  of the numerical errors at  the 

walls due t o  the stretched grids ( c f .  Appendix A ) .  Solutions obtained from the 

Navier-Stokes formulation for this case are presented in Figure 23, which is a plot 

of the pressure from the dual potential solution along the length of the t,rough, 

compared with the result obtained by Veldman (1981). The agreement between the 

two pressures is noticeably better from the case where the boundary-layer vorticity 

was used in the viscous layer (Figure 22). To further study this case, vorticity 

profiles from the boundary-layer and Navier-Stokes solutions are compared at select 

locations in the streamwise direction in Figures 24-26. From these figures, i t  cart 

be seen that there is considerable discrepancy between the two vorticities in the 

separated flow region. 

It should be pointed out that  at the flow conditions for this case, namely the 

moderate Reynolds number and the depth of the trough, the boundary-layer is 

relatively thick (almost twice the depth of the trough) and there is considerable 

variation of the pressure gradient in the normal direction. This fact is illustrated 

in Figure 27 by plotting pressure from the inviscid solution at the wall and at a 

location corresponding to the edge of the boundary layer for this configuration. 

Figure 27 shows that  there is significant variation of the pressure gradient in the 

normal direction within the shear region. Hence, the boundary-layer assumption is 

questionable in such regions and the type of interaction considered here is perhaps 

not appropriate for this case. A more suitable form of interaction is needed in which 

the boundary-layer equations are solved in regions very close to the wall (e.g., for the 



87 

0.05 

0.04 

0.03 

0.02 

0.01 

0.00 

-0.01 

-0.02 

1 1 1 1 -  1 

1.0 1.5 2.0 2.5 3.0 3.5 4.0 
5 or x 

Figure 23. Pressure distribution from the Navier-Stokes solution with vor- 
ticity specified at the first two points from the wall, 1 = 2 



I I I I 
PO'O 20'0 00'0 ZO'O- 90.0- 

z 



89 

v) 
Q, 
Y 
0 

I 
3i 
L 
Q, 
> 
0 
Z 

.- 

Z 

n 
cd 

W 

9 
E! 

9 

0 

In 
b 

9 
0 
In 

3 
9 
In 
c\1 

9 
0 

9 
2 
0 

: 
b 

9 
0 
In 

3 
9 
In 
e4 

9 

9 

0 

m 
e4 
I 

0 - @l 

0 
9 9 

rD in d M 

0 0 0 0 0 0 
9 9 9 9 9 

Z 



I 
L 
a .- 

- 
u 
(d 

I I I 1 I 

> 
2 

> 
i 

> 
n 5 

3 
3 

v ri 

? 
3 

? 
F 
O 

: 
b 

9 
0 
In 

3 
9 
In 
h( 

9 
0 

9 
In 
h( 
I 

0 - 
9 9 lo In t m N 

0 0 0 0 0 
9 9 

0 
9 9 

0 
9 

Z 



91 

0.10 

0.08 

0.06 

G 0.04 

0.02 

0.00 

-0.02 
1.0 1.5 2.0 

Wall 

2.5 
- 

5 

3.0 3.5 4.0 

Figure 27. Variation of pressure gradient in the normal direction for inviscid 
flow 



92 

first twenty points considered in this study), with appropriate vort,icity boundary 

conditions derived from the dual potential solution applied at the “edge” of the 

boundary-layer grid (instead of the usual irrotational assumption). Such a scheme 

could perhaps form the basis of a detailed study on the breakdown of the boundary- 

layer equations in separated flow regions. 

From the results presented in this section, it is possible to conclude that  t,he 

dual potential formulation of the Navier-Stokes equations can he applied t,o calcu- 

late separated flows, but caution has to  be exercised in using the t)oundary-layer 

equations to  supply the vorticity in regions away from the wall. 

D. Flow Over a Three-Dimensional Trough 

The dual potential - boundarj iayer interaction procedure was applied to  com- 

pute the incompressible laminar at t achcd flovv over a three-dimensional trough con- 

figuration and results for this case arc prcsentcd in this section. 

- 1. -_ Grid and geometry 

The geometry considered here is a three-dimensional version of the geome- 

try considered in the previous section and a schematic view is given in Figure 

28. Edwards (1986) obtained a solution for this geometry using an interacting 

boundary-layer algorithm coupled with an  inviscid small-disturbance analysis, while 

Davis et al. (1986) obtained a viscous flow solution for this geometry using a 

vorticity/stream-function type formulation for the Navier-Stokes equations. The  

surface of this geometry is described by the function 

z(x, y) = - t  sech(4s - 10) sech(4y - 6) (4.29) 
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Figure 28. Schematic view of a three-dimensional trough 
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Once again, the reference length for this geometry is L = 1 rn. The shape of the  

trough is symmetrical about the y = 1.5 plane. Results for inviscid, and viscous 

flow at  a free stream Reynolds number based on the reference length of 8000 were 

compared with those of Davis et al. (1986) and Edwards (1986). These results 

show that the present dual pot,ential procedure is capable of accurately predicting 

three-dimensional inviscid and viscous laminar flows. 

Figure 29 shows a view of the computational grid in the 5-2 plane which was used 

to  obtain a three-dimensional dual potential solution. The  J- and z-computational 

boundaries were located in the region 1 < 5 < 4,  0 < y < 3. A total of 41 40 A 51 

grid points were used. A uniform grid distribution was used in the z- and y- 

directions. The  51 points in the z-direction were distributed from the lower surface 

to 2 = 5 with a minimum spacing at  wall equal to 0.0003. In all calculations, 

periodic boundary conditions were used in thv y-direction. For inviscid flow. the 

following boundary conditions were used at t h c x  other boundaries: 

Inflow: 

x qJ = 29 = 0. 1 47 = u r n  (4.30) 

outflow: 

x z x  = $z3: = 1911 = 0; 4 z  = urxl (4.31) 

Wall: 

Far field: 

1 9 = x = = o ,  $2 = -(& + x y ) ,  dn = 0 (4.32) 

19 = x = 0, 1Lz = -(I92 i yy) ,  4 = uooz (4.33) 

Note that the flow at the inflow boundary (z = 1)  is assumed to  be uniform because 

the trough thickness asymptotically goes to zero away from the center so that at this 
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boundary, the thickness is practically negligible ( t  = 0.00016). Another reason for 

choosing this boundary condition was to  match those used by Davis et. a]. (1986). 

It will be shown t,hat for the conditions studied, these boundaries are adequate to  

capture any elliptic effects, and provide a smooth solution for the flow field. 

For viscous flow, the same boundary conditions were used a t  all but, the inflow 

boundary, where 1 was computed by solving a one-dimensional Poisson equation 

for a prescribed vorticity. The  vorticity for this boundary was obtained from the 

boundary-layer profile for the velocity at this location, which was obtained from a 

Falkner-Skan solution (e.g., White, 1974). 

Figure 30 shows the grid in the plane of symmetry which was used to obtain the 

boundary-layer solution. The edge of the grid in the  ?-direction is not uniform in 

z bu t  varies as the square root of 5.  At the inflow boundary, the grid extends from 

z = 0 to Z = ZmCLT = ab" where 6' is the displacenient thickness for a flat plate 

boundary-layer a t  a distance of i? ~ I from the lcading edge. and a is a coefficient to 

account for boundary-layer growth due to adverse pressure gradients. In this study, 

a value of a = 50 was used giving a value of = 0.2 at the inflow boundary. 

Once again, a nonuniform grid was used in the z-direction. with a total of 51 points 

extending from z = 0 to z = zmaz with a minimum spacing a t  the wall of 0.0001. 

Since the grids in the z-direction in the boundary-layer and dual potential codes 

are not necessarily identical, a cubic spline function interpolation scheme is used 

to  interpolate the vorticity components from the boundary-layer grid to the dual 

potential grid. For the geometries considered in this study, the variations in the z- 

and y-directions between the two grids is small and  vorticity was interpolated only 

as a function of the normal direction z (or z ) .  
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Figure 30. Boundary-layer grid in x-.z plane 



98 

- 2. Inviscid results 

As another simple verification of the numerical procedure, a three-dimensional 

inviscid solution was calculated for a t = 0.06 trough with the scalar potential 

function alone. Figures 31 and 32 are contour plots of the u- and v-velocity distri- 

butions on the surface of the trough. These figures show that  the predicted velocity 

distributions are smooth and that the flow becomes almost uniform at the outflow 

boundaries. The three-dimensional flow produced by the trough is illustrated by 

Figure 32, which shows that  upstream of the maximum depth of the trough, the 

pressure gradients created by the increasing depth of the trough push the flow to- 

wards the plane of symmetry, while in the downstream half of the geometry, the 

flow is in the direction away from the plane of symmetry. More detailed plots of 

the 2- and y- components of the velocit) arc giten in Figures 33 and 34 at two 

different y-planes and compared with othcr  rtuInwicaI results. Figure 33 is a plot of 

the streamwise velocity u on  the surface of the trough versus z, while Figure 34 is a 

plot of the spanwise velocity v on the surface of the trough versus z. Comparisons 

with other numerical computations as taken from Davis et al. (1986) are shown in 

these two figures. The agreement with the results of Edwards (1986) and Davis et  

al. (1986) is relatively good for the u velocity with the present results having values 

in between these other results. However, for the v velocity (Figure 34), the present 

results agree well with those of Edwards and differ slightly from those of Davis et 

a1 . 

It should be pointed out that the results of Davis et al. (1986) were obtained on 

a 81 x 41 x 81 grid. In the present calculations, which were performed on a CRAY 

XMP-48 with a maximum allowable memory of 4 million bytes, it was not possible 

to  obtain solutions with finer grids. Hence, results were obtained with coarser grids 
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to  determine the effect of grid size on t'he solutions. Figures 35 and 36 show results 

obtained with a 4 1  X 20 x 51 grid compared with those from a 4 1  x 40 x 51  grid. In 

these figures, the surface velocity components are plotted versus 5 a t  two spanwise 

locations for the two different grids. The figures show little or no difference in the 

results due to halving the number of grid points in the y-direction. ,411 subsequent 

calculations, unless otherwise indicated, were performed on a 41  x 40 x 51 grid 

The present calculations required approximately 900 iterations and took about 

300 seconds on the CRAY-XMP computer. 

3- Viscous results 

A three-dimensional viscous solution was calculated for a t = 0.03 trough at  

a n  upstream reference Reynolds number of 8000 with the interaction procedure 

described in $l17.B. For th i s  configuration, the flow remained attached over the 

entire surface. The flow was once again assumed to be two-dimensional a t  the 

upstream boundary. The boundary layer velocity profile was found from a solution 

of the Falkner-Skan equations for zero pressure gradient flow (e.g., White, 1974) 

and scaled to the appropriate location in the Z-direction (in this case, = 1.0 from 

the leading edge of a flat plate). 

As a measure of the agreement between the  dual potential and boundary-layer 

solutions, the pressures from both schemes (that is, the pressure which is specified 

to the boundary-layer equations, and the pressure from the boundary-layer solution 

which is calculated from Bernoullis's equation applied at the edge of the boundary- 

layer) a t  the plane of symmetry are presented in Figure 37. The agreement between 

the two is relatively good indicating the convergence of the interaction scheme. Some 

discrepancy is attributed to the different formulations and numerical algorithms. 
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Figures 38-43 are contour plots of the wall shear stresses, the  integral thick- 

nesses, the displacement thickness, and the boundary-layer pressure, respectively, 

for the three-dimensional trough geometry. These figures give a qualitative picture 

of the flowfield. The growth of the boundary layer is evident from the displacement 

thickness plots. It can be seen from these figures t h a t  the flow starts as two- 

dimensional, and then following the geometry. becomes three-dimensional towards 

the center of the trough. However, the flow docs not become two-dimensional as it 

approaches the outflow boundary, even though the geometry reverts to a flat sur- 

face, but, reaches a quasi three-dimensional state. This is clearly evident in Figure 

42, which is a contour plot of the  displacement thickness. A comparison of Figures 

4 0  and 42 also illustrates the effect of the cross-flow on the displacement thickness 

for the trough geometry. The presence of cross-flow has decreased the displacement 

effect of the boundary-layer from what it would have been if the  flow was purely 

t w 0- d i me n s i on a1 . 

A qualitative estimate of the viscous effects on the inviscid flow is obtained by 

comparing the pressure from the interaction solution in Figure 43 with a contour 

plot, of the inviscid pressure for this case which is given in Figure 44. The two 

figures show that even for this attached flow case, there is considerable interaction 

of the boundary-layer with the outer inviscid flow. In particular, the pressure from 

the interaction solution varies from -0.010 to 0.025 whereas the inviscid pressure 

varies from -0.02 to  0.08 in the flow domain. 

Detailed results for the  boundary-layer parameters are presented in the line 

plots given in Figures 45-49. These figures are plots of the streamwise variation of 

the various flow parameters at different span locations. Since the flow is symmetric 

about the y = 1.5 plane, results on only one side of the plane of symmetry are 
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Figure 38. Contour plot of s-corriponent of wall shear stress, t = 0.03 
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Figure 40. Contour plot of integral thickness in the s-direction, t = 0.03 
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Figure 41. Contour plot of integral thickness in the y-direction, t = 0.03 
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Figure 42. Contour plot of displacement thickness, t = 0.03 
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0.03 
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Figure 44 .  Contour plot of pressure from the  inviscid solution, 2 = 0.03 
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plotted. Comparison with other numerical results as obtained from Davis et  al. 

(1986) are presented in Figures 50 and 51. Figure 50 is a plot of the variation 

of rWx in the streamwise direction at two different y locations. The agreement 

with other results is relatively good. Figure 51 is a plot of T~~~ versus x again a t  

two different y locations. In this figure, the agreement wi th  the small-disturbance 

interaction results of Edwards (1986) is very good, while those of Davis et al. (1986) 

differ considerably. Davis et a]. (1986) believed that the discrepancy in the two 

results was caused by the grid spacing, though no conclusive studies are available 

for explaining the discrepancy. It should be noted that  it is difficult to study the 

effect of grid spacing in three-dimensional problems even with the supercomputers 

available today. .4s for the inviscid case, grid effects were examined by halving the 

number of point< in the y direction. Once again, there was little or no difference in 

the results, and hence det ailed comparisons are not presented here. 

Further comparisons between the two solutions (boundary-layer and dual po- 

tential) are presented by plotting the velocity profiles from both the dual potential 

and the boundary layer solutions in Figures 52 through 54. Figure 52 is a plot of the 

u velocity profiles in the plane of symmetry at different x locations. The growth of 

the boundary layer and the effect of the adverse pressure gradient near the center of 

the trough are visible in this figure. The dual potential and boundary-layer profiles 

show very good agreement. Detailed plots are given in Figures 53 and 54 which are 

plots of the velocity profiles in the maximum trough depth region at two different 

y planes. Again the agreement between the two solutions is relatively good. The 

no-slip boundary condition is not imposed on the vector potential functions directly 

and there is a small slip velocity in the dual potential profiles of the order of 2% of 

the  free stream velocity. This error is partially geometric in origin, produced by the 
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highly stretched grids which need to be used in the z-direction. A one-dimensional 

analysis of the cause of this error is given in Appendix A. Another possible source 

of error is interpolation errors due to the different grids used in the two schemes. 

The three-dimensional interaction calculations required approximately 1400 it- 

erations which took about 2500 seconds on the CRAY XMP. The iterative procedure 

was terminated when the residuals for both the dual potential and the boundary- 

layer algorithms had dropped by at least six orders of magnitude. A s  a practical 

convergence criteria of this method, the calculation was assumed to  be converged 

when the relative changes in the pressures and the wall shear stress was less than 

between successive iterations. The calculations were performed in the direct 

mode for the boundary-layer algorithm. Essentially the same solutions were ob- 

tained by using the inverse mode. However. the calculations in the inverse mode 

required more iterations. 

The results described i n  this section show that the dual potential formulation, 

when coupled with an appropriate boundary-layer algorithm, can be used for solving 

three-dimensional viscous flow problems in which the viscous layer remains thin as 

in the case of attached flow. 



V. CONCLUSIONS 

A. Conc lud ing  Remarks 

A dual potential decomposition scheme has been devised for computing three- 

dimensional rotational flows. With this f o r m  lation, rotational effects can be stud- 

ied by adding the appropriate vorticity into the  governing equations for the vector 

potential functions. 

In the  first part of this study, a finite-difference procedure for solving the dual 

potential equations has been developed and applied for calculating the inviscid 

but  rotational flow through indraft wind tunnels, including the effects of screens 

and vanes. Actuator disk theory was used to model the stagnation pressure loss 

produced by flow straightening devices such as screens and vanes which are located 

a t  the inlet entrance. In particular, the flow through the 80- by 120-ft wind tunnel 

at the  NASA Ames Research Center was successfully simulated using semi-empirical 

loss-coefficients to account for the pressure drop across the screens and vanes and 

the turning effect of these devices. The procedure was applied to  compute the flow 

for two different inlet vane and screen configurations. The numerical solutions were 

in satisfactory agreement with experimental and other numerical results. With 

the use of this procedure, the relative effect of various passage geometries, flow 

straightening devices, and external wind conditions on test-section flow quality can 

be studied. 

In the second part, viscous effects were modeled by adding vorticity in the  

boundary-layer region. This vorticity was obtained through a suitable boundary- 

layer interaction procedure. The numerical results obtained for attached flow over 

a three-dimensional trough compared favorably with other numerical solutions. For 
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separated flow, the numerical results indicate that  the present formulation of the 

dual potential - boundary layer interaction procedure fails to converge. For two- 

dimensional separated flows, the dual potential form of the Navier-Stokes equations 

was solved using a prescribed vorticity boundary condition. A comparison of the 

vorticities from t,he boundary-layer and the Navier-Stokes solutions indicates that  

for the type of interaction considered in this study, the boundary-layer solution does 

not, give a representation of the vorticity which is consist,ent with the dual potential 

formulation in regions where the boundary-layer is relatively thick as in separated 

flow. 

Overall, a versatile and flexible tool has been developed by which it is possible to  

simulate a wide variety of flows with little or no changes to the numerical algorithm. 

In particular, it is possible to study rotational effects by adding the appropriate 

vorticity into the governing dual potential formulation. 

B. Recommendations for Future Study 

The dual potential velocity decomposition h a s  been shown to be a viable alter- 

native to primitive variable formulations for solving many three-dimensional flow 

problems. In this study, the formulation was used to develop a procedure for com- 

puting both inviscid and viscous flows with relatively small changes in the algo- 

rithms. 

The dual potential formulation has already been applied successfully, in two di- 

mensions to  compute the inviscid transonic flow over airfoils (Chaderjian and Steger, 

1985). The  extension to transonic flow in three dimensions seems straightforward 

and needs to be implemented. While the present procedure has been successfully 

used to compute three-dimensional attached viscous flow, and some of the problems 



associated with separated flow have been addressed in this study, the issue of sepa- 

rated flow remains an unsolved problem. In the interaction procedure used in this 

study, the boundary-layer equations were solved in the primitive variable form. It 

would perhaps be advantageous to use a vorticity,'stream-function formulation of 

the boundary-layer equations in an alternate interaction procedure. 

The dual potential formulation has not been clearly understood or developed for 

unsteady, compressible flows, even in two dimensions. Hence, further work remains 

to be done in extending the formulation to these more complex flows. 

Finally, the treatment of turbulent flows is still one of the unsolved problems in 

fluid mechanics today. The use of the dual potential formulation for investigating 

turbulent flows needs to be examined; in particular, the selection of vorticity as the 

dependent variable in this formulation may have some advantages in this regard. 
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VIII. APPENDIX A: GEOMETRIC ERRORS 

In this appendix, the geometric errors introduced by using stretched grids in 

t h e  computational domain will be analyzed by considering a one-dimensional model 

problem of the vorticity/stream-function case. 

Consider Laplace's equation in one dimension 

solved on a simple geometrically stretched grid defined by 

( A 4  dy(k) = ck-'dyo; k = 1 , .  . . , K M A X  - 1 

where dy(k) = y(k + 1 )  - y(k). and K M A X  is the total number of points. 1c( = y 

is a solution of this equation for the boundary conditions 

a t y = O : $ = O ;  a t y  = y m a x : $ y = O  (A-3) 

When the domain is transformed into a uniformly spaced computational domain 

defined by q = q(y) ,  the governing equation ( A . l )  is transformed as 

where J is the Jacobian of the transformation defined as 

J = V Y t l  



In the discretized domain, the left-hand-side (LHS) of equation (-4.4) is approxi- 

The  metric quantities for this case can be calculated analytically for the particular 

stretching form that is used as shown below 

Setting $ = y and substituting the various terms in equation (A.7) for different 

values of k the left-hand-side can be evaluated exactly. For k = 3 , 4 , .  . . , KMAX - 2 

it can be shown that LHS = 0, and hence the analytical solution satisfies the numer- 

ical approximation exactly for any values of the stretching parameter E .  However, 

for k = 2, and for k = KMAX - 1, LHS is not, zero but is evaluated as 

1 ( 
e l )  l ( 3  + c ) (c2  + 2c + 5) 

(1 + c2)  
LHS1=2 - C  1 +  3 - -  

2 8 

In this case, LHS = 0 if, and only if, c = 1 which corresponds to a uniform mesh. 

The geometric errors introduced in the computation domain for the case of the 

simple geometric stretching have been analyzed above. The exact nature of the 

error would depend on the type of grid used. This kind of error has been analyzed 

by others (cf.  Hindman, 1981; Thomas and Lombard, 1978). I t  has been shown that 

i' 



the  error is localized to the boundary points for the kind of stretching considered 

here. This error is demonstrated in a solution of the one-dimensional homogeneous 

problem which is presented in Figure A l .  Figure A1 is a plot of ‘velocity’ (u = &) 

versus y for the case in which ymax = 5.0, K M A X  = 81, dyo = 0.0001. From 

the figure it can be seen that  the error is localized and does not  affect the solution 

for the interior points. In particular, when the nonhomogeneous Poisson equation 

is solved for boundary-layer type vorticity, the error is manifested as a small slip 

velocity as shown in Figures A 2  and A3. In this case, the equation t+hyv = -w is 

solved where w is computed from a polynomial equation for Blasius flow with a 

boundary-layer thickness of 0.02. The slip velocity at the  wall is of the order of 

1.5% for th i s  case. 

One of the commonly used cures for this problem is the free stream subtrac- 

tion concept introduced by Pulliam and Steger (1980) whereby a n  exact analytical 

solution of t h e  governing differential equation for uniform flow is subtracted from 

the right-hand-side of the numerical approximation. Unfortunately, this technique 

requires the knowledge of an exact analytical solution which may not always be 

known. 

Other solutions for this problem involve the  computing of metrics in special 

ways or the use of special discretization formulas at  boundaries (Vinokur, 1986). 
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IX. APPENDIX B: TWO-DIMENSIONAL EQUATIONS 

In this appendix, the governing equations, transformations and numerical algo- 

rithms for the two-dimensional incompressible dual potential and boundary-layer 

formulations which was used in 5IV.C will be presented. The numerical algorithms 

are simplifications of the ones presented in Chapter Ill and hence some details may 

not be included here. 

A. Dual Potential Form of Equations 

1. Governing equations 

For the  dual potential decomposition given by 

the  governing equations are given as 

4zz + 4 z z  = 0 

- 2. Transformation to general coordinates 

Using a general coordinate transformation defined by 

in terms of the independent variables (, 5, the Cartesian velocity components can be 

evaluated from the potential functions using the chain rule of partial differentiation 



on equation (B. l )  as 

'u. = (tzd,c + SX&) - (Lx,. + S Z X S )  

w = ( E d <  + S Z & )  + ( E Z X f  + S E X < )  

The metric quantities used in the above transformat.ions are defined as 

I- 

cz = - J 2 : ,  Jx: 

and J is the Jacobian of the transformation given by 

Unscaled contravariant velocity components of the velocity 

defined as 
u = t zu  + &w 

r ctor f can be 

The contravariant velocity components are conveniently split between the scalar 

potential contribution and the vector potential contribution as 

u = u4 + C T X  

(B.lO) 
w = w +  + wx 

where 

and 

( B . l l )  

(B.12) 



3. Governing equations in transformed coordinates 

The continuity equation can now be written in transformed coordinates as 

] = o  (B.13) 
\ 

The Poisson equations for the stream function can be t-ransforrned similarly em- 

ploying t.he same metric groupings and can be written as 

(B.14) 

while the vorticity transport equation (B.4) is written as 

4, Numerical algorithms 

The continuity equation for 4, equation (B.2),  is updated using an approximate 

factorization ( ADI-type) algorithm in delta-form. The  differencing scheme in A F  

form is given by 

The  superscript n refers to the iteration level. The differencing of the contravariant 

velocity terms is illustrated by considering I ! J ~  below 

(B.17) 

The free-stream subtraction term R,  appearing in the right-hand side of equa- 

tion (B.16), accounts for incomplete metric cancellation and is given by 

(B.18) 
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An AD1 algorithm is used to  solve equation (B.16).  Rewriting equation (B.16) 

in the form 

L:Lc(dn+l  - qT) = R (B.19) 

the AD1 algorithm is implemented in two steps a s  

L f A d *  R 

L ~ ~ A ~ '  = A#* 

47i+ 1 - - dn + A@ 

(B.20) 

The algorithm given by equation (B.19) requires only a series of scalar, tridiagonal 

inversions and is, therefore, solved efficient.ly. 

The Poisson equations for the stream function is updated in a similar manner, 

which results in the .4F form, 

(B.21) 

where 

The scheme given by equation (B.21) is implemented by the same two-step AD1 

algorithm given by equation (B.19). 

The differencing used with the vorticity transport equation is illustrated by 

considering equat,ion (B.15): 
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Assuming U is generally larger than W ,  three-point, second-order-accurate cen- 

tral differencing is used in <, and three-point, second-order-accurate upwind differ- 

encing is used in t .  Upwind differencing of U s c  is automatically achieved using 
4- 

where 

(B.25) 

The  convection equation is then solved using the  AF relaxation algorithm 

J - A<; 
[ I  + hU+$ + hW6< - h-6( (-) &] (I + hU-6:) b (wn+' - a"> 

Re - J 
(B.26) 

+ U-6,wn f + W6cwn ~ + 6,-(w 
Re 

where h is another relaxation parameter (h -,, 0) and L,'' and A,"' arc defined as 

Because central differencing is used in the <-direction, numerical dissipation is added 

to  the differencing scheme as 

= -h  U+6,hwn + U-6!wn + W6<wn - - J -  [ & ( w " ) ~  t &(w~)'"] + pV[(Aa)'I..} 
Re 

(B.28) 

At each t-plane, the algorithm requires a series of simple tridiagonal inversions in 

< *  

L 

Tangency or no-flow-through is imposed on a boundary surface by setting the 

appropriate contravariant velocity component to zero. On a < = constant plane, 

W is set to  zero. Tangency is enforced through implicit boundary conditions on 4, 
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which are obtained by solving the continuity equation at the half-cells neighboring a 

solid boundary. The center of such a cell is located at ( j ,  1 + i ) .  The finite-difference 

form of equation (B.13) can be written as 

Evaluating variables at 1 t 

example, 

by weighted avemging between 1 and 1 + 1 as. for 

where 

1 C -  r g L l  = -4 f f  , ~~4~ + - (A : :  l ~ c 4 3 + l  + A ; \ A ~ ~ J  
7 7  3 + 2  2 3  

Equation (R.28) can be written as 

(B.30) 

(B.31) 

To facilit,at,e the applicat,ion of approximate factorization, the cross-derivative terms 

are lagged in time in the usual way to  obtain the relaxation algorithm 

Equation (B.32) is of the same form as equation (B.16) and hence tangency can 

be enforced implicitly in the AD1 algorithm given by equation (B.19) with the 

tridiagonal and right-hand-side terms modified appropriately. 
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1 
B. Boundary Layer Equations 

- 1 .  Governing equations 

l In two dimensions, the unsteady. incornpressible laminar boundary-layer equa- 
1 

tions are 

(B.34) 

(B.35) 

In these equations, the normal coordinate 2 and the normal component of velocity 

w are scaled by the square root of the free stream Reynolds number R e ? .  
1 

Using a general coordinate transformation defined by 

$36) c - et,\. ,- 1 , - l+ s\ 
5 - b \ * ) l  3 > { - ‘ , - J  

t h e  above equations are transformed as 

where U and W are uriscaled contravariant velocities defined as 

- 2. Numerical algorithms 

(B.39) 

The boundary-layer equations a.re solved with a relaxation algorithm which can 

be run in either a time-accurate or an iterative mode. The relaxation algorithm 

was designed by Van Dalsem and Steger (1985) to yield convergence to a steady- 

state algorithm quickly. The continuity and momentum equations are solved in an 



uncoupled manner at each time step. The  momentum equation is used to update 

the streamwise velocity ii using upwind differencing in the streamwise direction and 

central differencing in the normal direction. The  continuity equation is used to  

update the normal velocity U: using second-order-accurate central differencing in 

the [-direction. The trapezoidal rule is used to  integrate the continuity equation in 

the <-direction to obtain u .  

The algorithm was designed for three-dimensional unsteady compressible flows 

by Van Dalsem and Steger (1985). '4 simplified version for two-dimensional incom- 

pressible flows which was used in this study is presentjed below. 

1) Update at the new time step from the %momentum equation 

2) Integrate the continuity equation for w using updated values of .U 

(R.41)  

3) Repeat steps (1)-(2) till convergence is obtained to the steady-state solution. 


